RPE Visual Cycle and Biochemical Phenotypes of Mutant Mouse Models

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1753)

Abstract

The retinal pigmented epithelium (RPE) is a single layer of polarized epithelial cells which plays many important roles for visual function. One of such roles is production of visual chromophore, 11-cis-retinal through the visual cycle. The visual cycle consists of biochemical processes for regenerating chromophore by a collective action of the RPE and photoreceptor. Photoreceptors harbor the G protein-coupled receptors, opsin which enables to receive light when it bounds to 11-cis-retinal. With absorption of a photon of light, 11-cis-retinal photoisomerizes to all-trans-retinal. All-trans-retinal reduces to all-trans-retinol in the photoreceptor and further recycles back to 11-cis-retinal in the RPE. Acyltransferases and isomerohydrolase(s) along with retinol dehydrogenases sequentially convert all-trans-retinol to 11-cis-retinal in the RPE. Dysfunctions of any retinoid cycle enzymes in the RPE can cause retinal diseases. Phenotyping RPE functions by the use of mutant mouse models will provide great detailed biochemical insights of the visual cycle and further manipulative strategies to protect against retinal degeneration. Here, we describe biochemical analyses of the visual cycle in mouse models using RPE cells.

Key words

RPE Visual cycle Retinol dehydrogenase (RDH) RDH5 RDH10 

Reference

  1. 1.
    Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881CrossRefPubMedGoogle Scholar
  2. 2.
    Sahu B, Chavali VR, Alapati A et al (2015) Presence of rd8 mutation does not alter the ocular phenotype of late-onset retinal degeneration mouse model. Mol Vis 21:273–284PubMedPubMedCentralGoogle Scholar
  3. 3.
    Sahu B, Sun W, Perusek L et al (2015) Conditional ablation of retinol dehydrogenase 10 in the retinal pigmented epithelium causes delayed dark adaption in mice. J Biol Chem 290:27239–27247CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sahu B, Maeda A (2016) Retinol dehydrogenases regulate vitamin a metabolism for visual function. Forum Nutr 8(11):746Google Scholar
  5. 5.
    Perusek L, Sahu B, Parmar T et al (2015) Di-retinoid-pyridinium-ethanolamine (A2E) accumulation and the maintenance of the visual cycle are independent of Atg7-mediated autophagy in the retinal pigmented epithelium. J Biol Chem 290:29035–29044CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kiser PD, Golczak M, Maeda A, Palczewski K (2012) Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochim Biophys Acta 1821:137–151CrossRefPubMedGoogle Scholar
  7. 7.
    Palczewski K (2012) Chemistry and biology of vision. J Biol Chem 287:1612–1619CrossRefPubMedGoogle Scholar
  8. 8.
    Maeda A, Maeda T, Sun W et al (2007) Redundant and unique roles of retinol dehydrogenases in the mouse retina. Proc Natl Acad Sci U S A 104:19565–19570CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Maeda A, Maeda T, Imanishi Y et al (2005) Role of photoreceptor-specific retinol dehydrogenase in the retinoid cycle in vivo. J Biol Chem 280:18822–18832CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen Y, Okano K, Maeda T et al (2012) Mechanism of all-trans-retinal toxicity with implications for stargardt disease and age-related macular degeneration. J Biol Chem 287:5059–5069CrossRefPubMedGoogle Scholar
  11. 11.
    Schur RM, Sheng L, Sahu B et al (2015) Manganese-enhanced MRI for preclinical evaluation of retinal degeneration treatments. Invest Ophthalmol Vis Sci 56:4936–4942CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Diemer T, Gibbs D, Williams DS (2008) Analysis of the rate of disk membrane digestion by cultured RPE cells. Adv Exp Med Biol 613:321–326CrossRefPubMedGoogle Scholar
  13. 13.
    Parker RO, Crouch RK (2010) Retinol dehydrogenases (RDHs) in the visual cycle. Exp Eye Res 91:788–792CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Haeseleer F, Jang GF, Imanishi Y et al (2002) Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina. J Biol Chem 277:45537–45546CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sahu B, Khade PK, Joseph S (2012) Functional replacement of two highly conserved tetraloops in the bacterial ribosome. Biochemistry 51:7618–7626CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sahu B, Khade PK, Joseph S (2013) Highly conserved base A55 of 16S ribosomal RNA is important for the elongation cycle of protein synthesis. Biochemistry 52:6695–6701CrossRefPubMedGoogle Scholar
  17. 17.
    Sundermeier TR, Sakami S, Sahu B et al (2017) MicroRNA-processing enzymes are essential for survival and function of mature retinal pigmented epithelial cells in mice. J Biol Chem 292:3366–3378CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Parmar T, Parmar VM, Arai E et al (2016) Acute stress responses are early molecular events of retinal degeneration in Abca4−/−Rdh8−/− mice after light exposure. Invest Ophthalmol Vis Sci 57:3257–3267CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandUSA

Personalised recommendations