In Vitro Assays for Mouse Müller Cell Phenotyping Through microRNA Profiling in the Damaged Retina

  • Luis I. Reyes-Aguirre
  • Heberto Quintero
  • Brenda Estrada-Leyva
  • Mónica Lamas
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1753)

Abstract

microRNA profiling has identified cell-specific expression patterns that could represent molecular signatures triggering the acquisition of a specific phenotype; in other words, of cellular identity and its associated function. Several groups have hypothesized that retinal cell phenotyping could be achieved through the determination of the global pattern of miRNA expression across specific cell types in the adult retina. This is especially relevant for Müller glia in the context of retinal damage, as these cells undergo dramatic changes of gene expression in response to injury, that render them susceptible to acquire a progenitor-like phenotype and be a source of new neurons.

We describe a method that combines an experimental protocol for excitotoxic-induced retinal damage through N-methyl-D-aspartate subretinal injection with magnetic-activated cell sorting (MACS) of Müller cells and RNA isolation for microRNA profiling. Comparison of microRNA patterns of expression should allow Müller cell phenotyping under different experimental conditions.

Key words

Retinal progenitor cell Regeneration Adult stem cell microRNA Magnetic-activated cell sorting (MACS) N-methyl-d-aspartate (NMDA) 

References

  1. 1.
    Jeon CJ, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18:8936–8946PubMedGoogle Scholar
  2. 2.
    Reichenbach A, Stolzenburg JU, Eberhardt W et al (1993) What do retinal müller (glial) cells do for their neuronal ‘small siblings’? J Chem Neuroanat 6:201–213CrossRefPubMedGoogle Scholar
  3. 3.
    Ramachandran R, Fausett BV, Goldman D (2010) Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol 12:1101–1107CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826CrossRefPubMedGoogle Scholar
  5. 5.
    Cremisi F (2013) MicroRNAs and cell fate in cortical and retinal development. Front Cell Neurosci 7:141CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Quintero H, Gómez-Montalvo AI, Lamas M (2016) MicroRNA changes through Müller glia dedifferentiation and early/late rod photoreceptor differentiation. Neuroscience 316:109–121CrossRefPubMedGoogle Scholar
  7. 7.
    Wohl SG, Reh TA (2016) The microRNA expression profile of mouse Müller glia in vivo and in vitro. Sci Rep 6:35423CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Niwa M, Aoki H, Hirata A et al (2016) Retinal cell degeneration in animal models. Int J Mol Sci 17:E110CrossRefPubMedGoogle Scholar
  9. 9.
    Reyes-Aguirre LI, Lamas M (2016) Oct4 methylation-mediated silencing as an epigenetic barrier preventing müller glia dedifferentiation in a murine model of retinal injury. Front Neurosci 10:523CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Luis I. Reyes-Aguirre
    • 1
  • Heberto Quintero
    • 1
    • 2
  • Brenda Estrada-Leyva
    • 1
  • Mónica Lamas
    • 1
  1. 1.Department of PharmacobiologyCentro de Investigación y de Estudios Avanzados (Cinvestav)Mexico CityMexico
  2. 2.Technische Universität DresdenCRTD/DFG-Center for Regenerative Therapies DresdenDresdenGermany

Personalised recommendations