Phenotyping of Gap-Junctional Coupling in the Mouse Retina

  • Arndt Meyer
  • Shubhash Chandra Yadav
  • Karin Dedek
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1753)

Abstract

In the mammalian retina, gap junctions, made of connexin proteins, are found in all neuronal cell types and are important for the transmission of rod photoreceptor signals, spike synchronization, noise reduction, and signal averaging. There are several methods available to assess gap junctional coupling in the retina: simultaneous electrical recordings from two adjacent cells, cut-loading, and intracellular injection of gap junction-permeable tracers. Here, we focus on the latter as it allows precise targeting of the cell of interest and is suitable to assess tracer coupling in a wide variety of retinal cell types, e.g., horizontal cells, amacrine cells, and ganglion cells. Tracer coupling experiments are usually performed in the intact retina and can provide information on the extent of coupling, the identity of synaptic partners, and (when combined with immunohistochemistry or pharmacology) the underlying connexin or the regulation of gap junctions.

Key words

Gap junctions Electrical synapses Connexin Tracer coupling Tracer injection Retina Mouse 

Notes

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft (DE1154/5-1 to K.D.) and has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 674901 and the European Commission (to K.D.) Open image in new window .

References

  1. 1.
    Vaney D (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neurosci Lett 125:187–190CrossRefPubMedGoogle Scholar
  2. 2.
    Güldenagel M, Ammermüller J, Feigenspan A et al (2001) Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 21:6036–6044PubMedGoogle Scholar
  3. 3.
    Maxeiner S, Dedek K, Janssen-Bienhold U et al (2005) Deletion of connexin45 in mouse retinal neurons disrupts the rod/cone signaling pathway between AII amacrine and ON cone bipolar cells and leads to impaired visual transmission. J Neurosci 25:566–576CrossRefPubMedGoogle Scholar
  4. 4.
    Kothmann WW, Trexler EB, Whitaker CM et al (2012) Nonsynaptic NMDA receptors mediate activity-dependent plasticity of gap junctional coupling in the AII amacrine cell network. J Neurosci 32:6747–6759CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kuo SP, Schwartz GW, Rieke F (2016) Nonlinear spatiotemporal integration by electrical and chemical synapses in the retina. Neuron 90:320–332CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dunn FA, Doan T, Sampath AP, Rieke F (2006) Controlling the gain of rod-mediated signals in the mammalian retina. J Neurosci 26:3959–3970CrossRefPubMedGoogle Scholar
  7. 7.
    Toychiev AH, Ivanova E, Yee CW, Sagdullaev BT (2013) Block of gap junctions eliminates aberrant activity and restores light responses during retinal degeneration. J Neurosci 33:13972–13977CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ivanova E, Yee CW, Baldoni R, Sagdullaev BT (2016) Aberrant activity in retinal degeneration impairs central visual processing and relies on Cx36-containing gap junctions. Exp Eye Res 150:81–89CrossRefPubMedGoogle Scholar
  9. 9.
    Meyer A, Hilgen G, Dorgau B et al (2014) AII amacrine cells discriminate between heterocellular and homocellular locations when assembling connexin36-containing gap junctions. J Cell Sci 127:1190–1202CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brüggen B, Meyer A, Boven F et al (2015) Type 2 wide-field amacrine cells in TH::GFP mice show a homogenous synapse distribution and contact small ganglion cells. Eur J Neurosci 41:734–747CrossRefPubMedGoogle Scholar
  11. 11.
    Pérez de Sevilla Müller L, Dedek K, Janssen-Bienhold U et al (2010) Expression and modulation of connexin30.2, a novel gap junction protein in the mouse retina. Vis Neurosci 27:91–101CrossRefGoogle Scholar
  12. 12.
    Lee SCS, Meyer A, Schubert T et al (2015) Morphology and connectivity of the small bistratified A8 amacrine cell in the mouse retina. J Comp Neurol 523:1529–1547CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Meyer A, Tetenborg S, Greb H et al (2016) Connexin30.2: in vitro interaction with Connexin36 in HeLa cells and expression in AII amacrine cells and intrinsically photosensitive ganglion cells in the mouse retina. Front Mol Neurosci 9:36CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pottek M, Knop GC, Weiler R, Dedek K (2011) Electrophysiological characterization of GFP-expressing cell populations in the intact retina. J Vis Exp 57:3457.  https://doi.org/10.3791/3457 Google Scholar
  15. 15.
    Schubert T, Degen J, Willecke K et al (2005) Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. J Comp Neurol 485:191–201CrossRefPubMedGoogle Scholar
  16. 16.
    Knop GC, Feigenspan A, Weiler R, Dedek K (2011) Inputs underlying the ON-OFF light responses of type 2 wide-field amacrine cells in TH::GFP mice. J Neurosci 31:4780–4791CrossRefPubMedGoogle Scholar
  17. 17.
    Knop GC, Pottek M, Monyer H et al (2014) Morphological and physiological properties of enhanced green fluorescent protein (EGFP)-expressing wide-field amacrine cells in the ChAT-EGFP mouse line. Eur J Neurosci 39:800–810CrossRefPubMedGoogle Scholar
  18. 18.
    Völgyi B, Abrams J, Paul DL, Bloomfield SA (2005) Morphology and tracer coupling pattern of alpha ganglion cells in the mouse retina. J Comp Neurol 492:66–77CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mills SL, Massey SC (1995) Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 377:734–737CrossRefPubMedGoogle Scholar
  20. 20.
    Vaney DI (1997) Neuronal coupling in rod-signal pathways of the retina. Invest Ophthalmol Vis Sci 38:267–273PubMedGoogle Scholar
  21. 21.
    Xin D, Bloomfield S (1999) Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina. Vis Neurosci 16:653–665CrossRefPubMedGoogle Scholar
  22. 22.
    Bennett M, Zukin R (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41:495–511CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Arndt Meyer
    • 1
  • Shubhash Chandra Yadav
    • 1
  • Karin Dedek
    • 1
    • 2
  1. 1.Neurosensorics, Institute for Biology and Environmental SciencesUniversity of OldenburgOldenburgGermany
  2. 2.Research Center Neurosensory ScienceUniversity of OldenburgOldenburgGermany

Personalised recommendations