Insights of Acute Lymphoblastic Leukemia with Development of Genomic Investigation

  • Heng XuEmail author
  • Yang Shu
Part of the Methods in Molecular Biology book series (MIMB, volume 1754)


Treatment outcomes for acute lymphoblastic leukemia (ALL), especially pediatric ALL, have greatly improved due to the risk-adapted therapy. Combination of drug development, clinical practice, as well as basic genetic researches has brought the survival rate of ALL from less than 10% to more than 90% today, not only increasing the treatment efficacy but also limiting adverse drug reactions (ADRs). In this review, we summarized the landscape identification of ALL genetic alterations, which provided the opportunity to increase the survival rate and especially minimize the relapse risk of ALL, and highlighted the importance of the development of new technologies of genomic investigation for translational medicine.

Key words

Acute lymphoblastic leukemia Next-generation sequencing Microarray Single nucleotide polymorphism Mutation Drug efficacy Adverse drug reactions Translational medicine Genomic landscape Bioinformatics Big data 


  1. 1.
    Pui CH (1995) Childhood leukemias. N Engl J Med 332(24):1618–1630PubMedCrossRefGoogle Scholar
  2. 2.
    Pui CH, Evans WE (1998) Acute lymphoblastic leukemia. N Engl J Med 339(9):605–615PubMedCrossRefGoogle Scholar
  3. 3.
    Pui CH, Campana D, Evans WE (2001) Childhood acute lymphoblastic leukaemia—current status and future perspectives. Lancet Oncol 2(10):597–607PubMedCrossRefGoogle Scholar
  4. 4.
    Inaba H, Greaves M, Mullighan CG (2013) Acute lymphoblastic leukaemia. Lancet 381(9881):1943–1955PubMedCrossRefGoogle Scholar
  5. 5.
    Pui C-H, Crist WM, Look AT (1990) Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood 76(8):1449–1463PubMedGoogle Scholar
  6. 6.
    Pui CH, Relling MV, Downing JR (2004) Acute lymphoblastic leukemia. N Engl J Med 350(15):1535–1548PubMedCrossRefGoogle Scholar
  7. 7.
    Mullighan CG (2013) Genomic characterization of childhood acute lymphoblastic leukemia. Semin Hematol 50(4):314–324PubMedCrossRefGoogle Scholar
  8. 8.
    Mullighan CG (2012) Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Invest 122(10):3407–3415PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mullighan CG (2011) New strategies in acute lymphoblastic leukemia: translating advances in genomics into clinical practice. Clin Cancer Res 17(3):396–400PubMedCrossRefGoogle Scholar
  10. 10.
    Pui C-H, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354(2):166–178PubMedCrossRefGoogle Scholar
  11. 11.
    Roberts KG, Mullighan CG (2015) Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol 12(6):344–357PubMedCrossRefGoogle Scholar
  12. 12.
    Pui C-H, Robison LL, Look AT (2008) Acute lymphoblastic leukaemia. Lancet 371(9617):1030–1043PubMedCrossRefGoogle Scholar
  13. 13.
    Bhojwani D, Pui CH (2013) Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol 14(6):e205–e217PubMedCrossRefGoogle Scholar
  14. 14.
    Fielding AK et al (2007) Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood 109(3):944–950PubMedCrossRefGoogle Scholar
  15. 15.
    Einsiedel HG et al (2005) Long-term outcome in children with relapsed ALL by risk-stratified salvage therapy: results of trial acute lymphoblastic leukemia-relapse study of the Berlin-Frankfurt-Munster Group 87. J Clin Oncol 23(31):7942–7950PubMedCrossRefGoogle Scholar
  16. 16.
    Rivera GK et al (2005) Bone marrow recurrence after initial intensive treatment for childhood acute lymphoblastic leukemia. Cancer 103(2):368–376PubMedCrossRefGoogle Scholar
  17. 17.
    Mullighan CG (2014) The genomic landscape of acute lymphoblastic leukemia in children and young adults. ASH Edu Progr Book 2014(1):174–180Google Scholar
  18. 18.
    Moriyama T, Relling MV, Yang JJ (2015) Inherited genetic variation in childhood acute lymphoblastic leukemia. Blood 125(26):3988–3995PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Mullighan CG (2012) The molecular genetic makeup of acute lymphoblastic leukemia. ASH Edu Progr Book 2012(1):389–396Google Scholar
  20. 20.
    Pui C-H, Behm FG, Crist WM (1993) Clinical and biologic relevance of immunologic marker studies in childhood acute lymphoblastic leukemia. Blood 82(2):343–362PubMedGoogle Scholar
  21. 21.
    Mancini M et al (2005) A comprehensive genetic classification of adult acute lymphoblastic leukemia (ALL): analysis of the GIMEMA 0496 protocol. Blood 105(9):3434–3441PubMedCrossRefGoogle Scholar
  22. 22.
    Armstrong SA, Look AT (2005) Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 23(26):6306–6315PubMedCrossRefGoogle Scholar
  23. 23.
    Mullighan CG (2012) The molecular genetic makeup of acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2012:389–396PubMedGoogle Scholar
  24. 24.
    Sutcliffe M et al (2005) High concordance from independent studies by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI Standard-Risk B-precursor Acute Lymphoblastic Leukemia: a Children’s Oncology Group (COG) initiative. Leukemia 19(5):734–740PubMedCrossRefGoogle Scholar
  25. 25.
    Gleißner B et al (2002) Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: a prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood 99(5):1536–1543PubMedCrossRefGoogle Scholar
  26. 26.
    Weng AP et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306(5694):269–271PubMedCrossRefGoogle Scholar
  27. 27.
    Aricò M et al (2000) Outcome of treatment in children with Philadelphia chromosome–positive acute lymphoblastic leukemia. N Engl J Med 342(14):998–1006PubMedCrossRefGoogle Scholar
  28. 28.
    Pui C-H et al (2002) Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 359(9321):1909–1915PubMedCrossRefGoogle Scholar
  29. 29.
    Ferrando AA et al (2002) Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1(1):75–87PubMedCrossRefGoogle Scholar
  30. 30.
    Ferrando AA et al (2004) Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet 363(9408):535–536PubMedCrossRefGoogle Scholar
  31. 31.
    Vijayakrishnan J, Houlston R (2010) Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Haematologica 95(8):1405–1414PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Chang JS et al (2010) Genetic polymorphisms in adaptive immunity genes and childhood acute lymphoblastic leukemia. Cancer Epidemiol Biomarkers Prev 19(9):2152–2163PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Relling MV et al (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 91(23):2001–2008PubMedCrossRefGoogle Scholar
  34. 34.
    Relling MV, Evans WE (2015) Pharmacogenomics in the clinic. Nature 526(7573):343PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Schena M et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467PubMedCrossRefGoogle Scholar
  36. 36.
    McCarroll SA et al (2008) Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet 40(10):1166–1174PubMedCrossRefGoogle Scholar
  37. 37.
    Davies JJ, Wilson IM, Lam WL (2005) Array CGH technologies and their applications to cancer genomes. Chromosom Res 13(3):237–248CrossRefGoogle Scholar
  38. 38.
    Southern E, Mir K, Shchepinov M (1999) Molecular interactions on microarrays. Nat Genet 21:5–9PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang L, Miles MF, Aldape KD (2003) A model of molecular interactions on short oligonucleotide microarrays. Nat Biotechnol 21(7):818–821PubMedCrossRefGoogle Scholar
  40. 40.
    Schena M (1999) DNA microarrays: a practical approach. Oxford University Press, New York, NYGoogle Scholar
  41. 41.
    Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32:496–501PubMedCrossRefGoogle Scholar
  42. 42.
    Johnson JM et al (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302(5653):2141–2144PubMedCrossRefGoogle Scholar
  43. 43.
    Matsuzaki H et al (2004) Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays. Nat Methods 1(2):109–111PubMedCrossRefGoogle Scholar
  44. 44.
    Mullighan CG, Downing JR (2009) Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia 23(7):1209–1218PubMedCrossRefGoogle Scholar
  45. 45.
    Yang YH et al (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30(4):e15–e15PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Irving JA et al (2005) Loss of heterozygosity in childhood acute lymphoblastic leukemia detected by genome-wide microarray single nucleotide polymorphism analysis. Cancer Res 65(8):3053–3058PubMedCrossRefGoogle Scholar
  47. 47.
    Huyghe JR et al (2013) Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion. Nat Genet 45(2):197–201PubMedCrossRefGoogle Scholar
  48. 48.
    Bertone P et al (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306(5705):2242–2246PubMedCrossRefGoogle Scholar
  49. 49.
    Rhodes DR, Chinnaiyan AM (2005) Integrative analysis of the cancer transcriptome. Nat Genet 37:S31–S37PubMedCrossRefGoogle Scholar
  50. 50.
    Bullinger L et al (2004) Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350(16):1605–1616PubMedCrossRefGoogle Scholar
  51. 51.
    Metzeler KH et al (2011) TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 29(10):1373–1381PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Yang JJ et al (2009) Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA 301(4):393–403PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bassan R, Hoelzer D (2011) Modern therapy of acute lymphoblastic leukemia. J Clin Oncol 29(5):532–543PubMedCrossRefGoogle Scholar
  54. 54.
    Pui C-H et al (2004) Improved outcome for children with acute lymphoblastic leukemia: results of total therapy study XIIIB at St Jude Children’s Research Hospital. Blood 104(9):2690–2696PubMedCrossRefGoogle Scholar
  55. 55.
    Simon RM (2003) Design and analysis of DNA microarray investigations. Springer Science & Business Media, New York, NYGoogle Scholar
  56. 56.
    Rabbee N, Speed TP (2006) A genotype calling algorithm for affymetrix SNP arrays. Bioinformatics 22(1):7–12PubMedCrossRefGoogle Scholar
  57. 57.
    Korn JM et al (2008) Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet 40(10):1253–1260PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hubbell E, Liu W-M, Mei R (2002) Robust estimators for expression analysis. Bioinformatics 18(12):1585–1592PubMedCrossRefGoogle Scholar
  59. 59.
    Xu H et al (2013) Novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J Natl Cancer Inst 105(10):733–742PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Neale BM et al (2010) Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49(9):884–897PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Mullighan CG et al (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446(7137):758–764PubMedCrossRefGoogle Scholar
  62. 62.
    Mullighan CG et al (2008) BCR–ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453(7191):110–114PubMedCrossRefGoogle Scholar
  63. 63.
    Mullighan CG et al (2009) Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 360(5):470–480PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mullighan CG et al (2009) Rearrangement of CRLF2 in B-progenitor–and Down syndrome–associated acute lymphoblastic leukemia. Nat Genet 41(11):1243–1246PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kawamata N et al (2008) Molecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high-resolution single nucleotide polymorphism oligonucleotide genomic microarray. Blood 111(2):776–784PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kuiper R et al (2007) High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 21(6):1258–1266PubMedCrossRefGoogle Scholar
  67. 67.
    Kuiper R et al (2010) IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia 24(7):1258–1264PubMedCrossRefGoogle Scholar
  68. 68.
    Den Boer ML et al (2009) A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 10(2):125–134CrossRefGoogle Scholar
  69. 69.
    Roberts KG et al (2012) Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 22(2):153–166PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wood B et al (2009) Patients with early T-cell precursor (ETP) acute lymphoblastic leukemia (ALL) have high levels of minimal residual disease (MRD) at the end of induction—a Children’s Oncology Group (COG) study. Blood 114(22):9–9Google Scholar
  71. 71.
    Coustan-Smith E et al (2009) Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 10(2):147–156PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Paugh SW et al (2015) NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat Genet 47(6):607–614PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wang Y, Armstrong SA (2007) Genome-wide SNP analysis in cancer: leukemia shows the way. Cancer Cell 11(4):308–309PubMedCrossRefGoogle Scholar
  74. 74.
    Beroukhim R et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Irving JA et al (2005) Loss of heterozygosity and somatic mutations of the glucocorticoid receptor gene are rarely found at relapse in pediatric acute lymphoblastic leukemia but may occur in a subpopulation early in the disease course. Cancer Res 65(21):9712–9718PubMedCrossRefGoogle Scholar
  76. 76.
    Nebral K et al (2009) Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 23(1):134–143PubMedCrossRefGoogle Scholar
  77. 77.
    Iacobucci I et al (2009) Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1–positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood 114(10):2159–2167PubMedCrossRefGoogle Scholar
  78. 78.
    Lilljebjörn H et al (2010) The correlation pattern of acquired copy number changes in 164 ETV6/RUNX1-positive childhood acute lymphoblastic leukemias. Hum Mol Genet 19(16):3150–3158PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Russell LJ et al (2009) Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood 114(13):2688–2698PubMedCrossRefGoogle Scholar
  80. 80.
    Yoda A et al (2010) Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci 107(1):252–257PubMedCrossRefGoogle Scholar
  81. 81.
    Mullighan CG et al (2009) JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci 106(23):9414–9418PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Van Vlierberghe P et al (2006) The cryptic chromosomal deletion del (11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood 108(10):3520–3529PubMedCrossRefGoogle Scholar
  83. 83.
    Lahortiga I et al (2007) Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 39(5):593–595PubMedCrossRefGoogle Scholar
  84. 84.
    Clappier E et al (2007) The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 110(4):1251–1261PubMedCrossRefGoogle Scholar
  85. 85.
    Graux C et al (2004) Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 36(10):1084PubMedCrossRefGoogle Scholar
  86. 86.
    Palomero T et al (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13(10):1203–1210PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Tosello V et al (2009) WT1 mutations in T-all. Blood 114(5):1038–1045PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Xavier RJ, Rioux JD (2008) Genome-wide association studies: a new window into immune-mediated diseases. Nat Rev Immunol 8(8):631–643PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sherborne AL et al (2010) Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat Genet 42(6):492–494PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Perez-Andreu V et al (2013) Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat Genet 45(12):1494–1498PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Papaemmanuil E et al (2009) Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet 41(9):1006–1010PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Xu H et al (2015) Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children. Nat Commun 6:7553PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Perez-Andreu V et al (2015) A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. Blood 125(4):680–686PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Liao F et al (2016) Association between PIP4K2A polymorphisms and acute lymphoblastic leukemia susceptibility. Medicine (Baltimore) 95(18):e3542CrossRefGoogle Scholar
  95. 95.
    Xu H et al (2012) ARID5B genetic polymorphisms contribute to racial disparities in the incidence and treatment outcome of childhood acute lymphoblastic leukemia. J Clin Oncol 30(7):751–757PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Linabery AM, Ross JA (2008) Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer 112(2):416–432PubMedCrossRefGoogle Scholar
  97. 97.
    Dores GM et al (2012) Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007. Blood 119(1):34–43PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Burmeister T et al (2014) Germline variants in IKZF1, ARID5B, and CEBPE as risk factors for adult-onset acute lymphoblastic leukemia: an analysis from the GMALL study group. Haematologica 99(2):e23–e25PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Hou Q et al (2017) Regulatory network of GATA3 in pediatric acute lymphoblastic leukemia. Oncotarget 8(22):36040–36053PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Trevino LR et al (2009) Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet 41(9):1001–1005PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Huang Q (2015) Genetic study of complex diseases in the post-GWAS era. J Genet Genomics 42(3):87–98PubMedCrossRefGoogle Scholar
  102. 102.
    Freedman ML et al (2011) Principles for the post-GWAS functional characterization of cancer risk loci. Nat Genet 43(6):513–518PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Vijayakrishnan J et al (2015) The 9p21.3 risk of childhood acute lymphoblastic leukaemia is explained by a rare high-impact variant in CDKN2A. Sci Rep 5:15065PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Walsh KM et al (2015) A heritable missense polymorphism in CDKN2A confers strong risk of childhood acute lymphoblastic leukemia and is preferentially selected during clonal evolution. Cancer Res 75(22):4884–4894PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Studd JB et al (2017) Genetic and regulatory mechanism of susceptibility to high-hyperdiploid acute lymphoblastic leukaemia at 10p21.2. Nat Commun 8:14616PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Hungate EA et al (2016) A variant at 9p21.3 functionally implicates CDKN2B in paediatric B-cell precursor acute lymphoblastic leukaemia aetiology. Nat Commun 7:10635PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Yin D et al (2017) Impact of NUDT15 polymorphisms on thiopurines-induced myelotoxicity and thiopurines tolerance dose. Oncotarget 8(8):13575–13585PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Yang JJ et al (2015) Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol 33(11):1235–1242PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Moriyama T et al (2016) NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet 48(4):367–373PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Xu H et al (2015) Common variants in ACYP2 influence susceptibility to cisplatin-induced hearing loss. Nat Genet 47(3):263–266PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Martinelli G et al (2009) IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol 27(31):5202–5207PubMedCrossRefGoogle Scholar
  112. 112.
    Schwab C et al (2010) Evaluation of multiplex ligation-dependent probe amplification as a method for the detection of copy number abnormalities in B-cell precursor acute lymphoblastic leukemia. Genes Chromosom Cancer 49(12):1104–1113PubMedCrossRefGoogle Scholar
  113. 113.
    JD MP et al (2001) A physical map of the human genome. Nature 409(6822):934–941CrossRefGoogle Scholar
  114. 114.
    Collins FS, Morgan M, Patrinos A (2003) The Human Genome Project: lessons from large-scale biology. Science 300(5617):286–290PubMedCrossRefGoogle Scholar
  115. 115.
    Wetterstrand KA (2013) DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). National Human Genome Research Institute, Bethesda, MDGoogle Scholar
  116. 116.
    Tomkinson AE et al (2006) DNA ligases: structure, reaction mechanism, and function. Chem Rev 106(2):687–699PubMedCrossRefGoogle Scholar
  117. 117.
    Harismendy O et al (2009) Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol 10(3):R32PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145PubMedCrossRefGoogle Scholar
  119. 119.
    Valouev A et al (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18(7):1051–1063PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Loman NJ et al (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30(5):434–439PubMedCrossRefGoogle Scholar
  122. 122.
    Rothberg JM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356):348–352PubMedCrossRefGoogle Scholar
  123. 123.
    Ju J et al (2006) Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc Natl Acad Sci 103(52):19635–19640PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Solexa I (2006) Illumina: protocol for whole genome sequencing using solexa technology. BioTech Protoc Guide 2006:29Google Scholar
  125. 125.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669–680PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Buenrostro JD et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Brunner AL et al (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 19(6):1044–1056PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Ding L et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382):506–510PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Masetti R et al (2013) CBFA2T3-GLIS2 fusion transcript is a novel common feature in pediatric, cytogenetically normal AML, not restricted to FAB M7 subtype. Blood 121(17):3469–3472PubMedCrossRefGoogle Scholar
  131. 131.
    Schatz MC, Langmead B (2013) The DNA data deluge. IEEE Spectr 50(7):28–33CrossRefGoogle Scholar
  132. 132.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Langmead B et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Li R et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967PubMedCrossRefGoogle Scholar
  135. 135.
    Burrows, M. and D.J. Wheeler, (1994) A block-sorting lossless data compression algorithm. SRC research reportGoogle Scholar
  136. 136.
    Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18(11):1851–1858PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Ewing B et al (1998) Base-calling of automated sequencer traces usingPhred. I. Accuracy assessment. Genome Res 8(3):175–185PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Martin ER et al (2010) SeqEM: an adaptive genotype-calling approach for next-generation sequencing studies. Bioinformatics 26(22):2803–2810PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    McKenna A et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Ivakhno S et al (2010) CNAseg—a novel framework for identification of copy number changes in cancer from second-generation sequencing data. Bioinformatics 26(24):3051–3058PubMedCrossRefGoogle Scholar
  142. 142.
    Chiang DY et al (2009) High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat Methods 6(1):99–103PubMedCrossRefGoogle Scholar
  143. 143.
    Magi A et al (2011) Detecting common copy number variants in high-throughput sequencing data by using JointSLM algorithm. Nucleic Acids Res 39(10):e65PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Chen X et al (2015) CONSERTING: integrating copy-number analysis with structural-variation detection. Nat Methods 12(6):527–530PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Chen K et al (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6(9):677–681PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Wang J et al (2011) CREST maps somatic structural variation in cancer genomes with base-pair resolution. Nat Methods 8(8):652–654PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Sun R et al (2012) Breakpointer: using local mapping artifacts to support sequence breakpoint discovery from single-end reads. Bioinformatics 28(7):1024–1025PubMedCrossRefGoogle Scholar
  148. 148.
    Zhao H, Zhao F (2015) BreakSeek: a breakpoint-based algorithm for full spectral range INDEL detection. Nucleic Acids Res 43(14):6701–6713PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Sindi SS et al (2012) An integrative probabilistic model for identification of structural variation in sequencing data. Genome Biol 13(3):R22PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Handsaker RE et al (2015) Large multiallelic copy number variations in humans. Nat Genet 47(3):296–303PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Abo RP et al (2015) BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers. Nucleic Acids Res 43(3):e19–e19PubMedCrossRefGoogle Scholar
  152. 152.
    Hajirasouliha I et al (2010) Detection and characterization of novel sequence insertions using paired-end next-generation sequencing. Bioinformatics 26(10):1277–1283PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Van Vlierberghe P et al (2010) PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet 42(4):338–342PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    De Keersmaecker K (2013) Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet 45:186–190PubMedCrossRefGoogle Scholar
  155. 155.
    Holmfeldt L (2013) The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 45:242–252PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Kalender Atak Z (2013) Comprehensive analysis of transcriptome variation uncovers known and novel driver events in T-cell acute lymphoblastic leukemia. PLoS Genet 9:e1003997PubMedCentralCrossRefGoogle Scholar
  157. 157.
    Li Y (2014) Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508:98–102PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Papaemmanuil E (2014) RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet 46:116–125PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Zhang J (2012) The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481:157–163PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Huether R et al (2014) The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nat Commun 5:3630PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    O'Neil J (2007) FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 204:1813–1824PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Van Vlierberghe P et al (2011) PHF6 mutations in adult acute myeloid leukemia. Leukemia 25(1):130–134PubMedCrossRefGoogle Scholar
  163. 163.
    Treanor LM (2014) Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. J Exp Med 211:701–713PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Ma X (2015) Rise and fall of subclones from diagnosis to relapse in pediatric B-progenitor acute lymphoblastic leukemia. Nat Commun 6:6604PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Andersson AK (2015) The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukaemias. Nat Genet 47(4):330–337PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Roberts KG (2014) Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 371:1005–1015PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Mullighan CG (2011) CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471:235–239PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Hof J (2011) Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol 29:3185–3193PubMedCrossRefGoogle Scholar
  169. 169.
    Mar BG (2014) Mutations in epigenetic regulators including SETD2 are gained during relapse in paediatric acute lymphoblastic leukaemia. Nat Commun 5:3469PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Tzoneva G (2013) Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med 19:368–371PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Yang JJ (2012) Genome-wide association study identifies germline polymorphisms associated with relapse of childhood acute lymphoblastic leukemia. Blood 120:4197–4204PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Li B et al (2015) Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat Med 21(6):563–571PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Ionita-Laza I et al (2013) Sequence kernel association tests for the combined effect of rare and common variants. Am J Hum Genet 92(6):841–853PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Moriyama T et al (2015) Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncol 16(16):1659–1666PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Shah S et al (2013) A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat Genet 45(10):1226–1231PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Precision Medicine Center, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina

Personalised recommendations