Advertisement

Blood-Based Biomarker Screening with Agnostic Biological Definitions for an Accurate Diagnosis Within the Dimensional Spectrum of Neurodegenerative Diseases

  • Filippo Baldacci
  • Simone Lista
  • Sid E. O’Bryant
  • Roberto Ceravolo
  • Nicola Toschi
  • Harald Hampel
  • for the Alzheimer Precision Medicine Initiative (APMI)
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1750)

Abstract

The discovery, development, and validation of novel candidate biomarkers in Alzheimer’s disease (AD) and other neurodegenerative diseases (NDs) are increasingly gaining momentum. As a result, evolving diagnostic research criteria of NDs are beginning to integrate biofluid and neuroimaging indicators of pathophysiological mechanisms. More than 10% of people aged over 65 suffer from NDs. There is an urgent need for a refined two-stage diagnostic model to first initiate an early, sensitive, and noninvasive process in primary care settings. Individuals that meet detection criteria will then be channeled to more specific, costly (positron-emission tomography), and invasive (cerebrospinal fluid) assessment methods for confirmatory biological characterization and diagnosis.

A reliable and sensitive blood test for AD and other NDs is not yet established; however, it would provide the golden screening gate for an efficient primary care management. A limitation to the development of a large-scale blood-screening biomarker-based test is the traditional application of clinically descriptive criteria for the categorization of single late-stage ND constructs. These are genetically and biologically heterogeneous, reflected in multiple pathophysiological mechanisms and subsequent pathologies throughout a dimensional continuum. Evidence suggests that a shared, “open-source” integrated multilevel categorization of NDs that clusters individuals based on descriptive clinical phenotypes and pathophysiological biomarker signatures will provide the next incremental step toward an improved diagnostic process of NDs. This intermediate objective toward unbiased biomarker-guided early detection of individuals at risk for NDs is currently carried out by the international pilot Alzheimer Precision Medicine Initiative Cohort Program (APMI-CP).

Key words

Neurodegenerative diseases Alzheimer’s disease Biomarkers Pathophysiology Alzheimer precision medicine initiative Systems biology Systems neurophysiology Precision medicine Blood Screening 

Notes

Acknowledgments

S.E.O. is supported by the National Institute on Aging of the National Institutes of Health under Award Numbers R01AG051848 and R56AG054073. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

H.H. is supported by the AXA Research Fund, the “Fondation Université Pierre et Marie Curie” and the “Fondation pour la Recherche sur Alzheimer,” Paris, France. Ce travail a bénéficié d’une aide de l’Etat “Investissements d’avenir” ANR-10-IAIHU-06. The research leading to these results has received funding from the program “Investissements d’avenir” ANR-10-IAIHU-06 (Agence Nationale de la Recherche-10-IA Agence Institut Hospitalo-Universitaire-6).

Disclosure Statement

S.L. received lecture honoraria from Roche. H.H. reports no conflict of interest with the content of the present manuscript. He serves as Senior Associate Editor for the Journal Alzheimer’s & Dementia; he has been a scientific consultant and/or speaker and/or attended scientific advisory boards of Axovant, Anavex, Eli Lilly and company, GE Healthcare, Cytox Ltd., Jung Diagnostics GmbH, Roche, Biogen Idec, Takeda-Zinfandel, Oryzon Genomics, and Qynapse; and he receives research support from the Association for Alzheimer Research (Paris), Pierre and Marie Curie University (Paris), and Pfizer & Avid (paid to institution); and he has patents, but receives no royalties. F.B., S.E.O., R.C., and N.T. declare no conflicts of interest.

References

  1. 1.
    Kovacs GG (2016) Molecular pathological classification of neurodegenerative diseases: turning towards precision medicine. Int J Mol Sci 17:pii: E189.  https://doi.org/10.3390/ijms17020189 CrossRefGoogle Scholar
  2. 2.
    Baldacci F, Lista S, Garaci F et al (2016) Biomarker-guided classification scheme of neurodegenerative diseases. J Sport Health Sci 5:383–387.  https://doi.org/10.1016/j.jshs.2016.08.007 CrossRefGoogle Scholar
  3. 3.
    Hampel H, O’Bryant SE, Castrillo JI et al (2016) Precision medicine—the golden gate for detection, treatment and prevention of Alzheimer’s disease. J Prev Alz Dis 3:243–259.  https://doi.org/10.14283/jpad.2016.112 CrossRefGoogle Scholar
  4. 4.
    Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95.  https://doi.org/10.1067/mcp.2001.113989 CrossRefGoogle Scholar
  5. 5.
    Hampel H, Lista S, Khachaturian ZS (2012) Development of biomarkers to chart all Alzheimer’s disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers Dement J Alzheimers Assoc 8:312–336.  https://doi.org/10.1016/j.jalz.2012.05.2116 CrossRefGoogle Scholar
  6. 6.
    Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144.  https://doi.org/10.1038/nrneurol.2010.4 CrossRefPubMedGoogle Scholar
  7. 7.
    Hampel H, Lista S (2013) Use of biomarkers and imaging to assess pathophysiology, mechanisms of action and target engagement. J Nutr Health Aging 17:54–63.  https://doi.org/10.1007/s12603-013-0003-1 CrossRefPubMedGoogle Scholar
  8. 8.
    Blennow K, Hampel H, Zetterberg H (2014) Biomarkers in amyloid-β immunotherapy trials in Alzheimer’s disease. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 39:189–201.  https://doi.org/10.1038/npp.2013.154 CrossRefGoogle Scholar
  9. 9.
    O’Bryant SE, Mielke MM, Rissman RA et al (2017) Blood-based biomarkers in Alzheimer disease: current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimers Dement J Alzheimers Assoc 13:45–58.  https://doi.org/10.1016/j.jalz.2016.09.014 CrossRefGoogle Scholar
  10. 10.
    Hampel H, Frank R, Broich K et al (2010) Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9:560–574.  https://doi.org/10.1038/nrd3115 CrossRefPubMedGoogle Scholar
  11. 11.
    Vellas B, Carrillo MC, Sampaio C et al (2013) Designing drug trials for Alzheimer’s disease: what we have learned from the release of the phase III antibody trials: a report from the EU/US/CTAD Task Force. Alzheimers Dement J Alzheimers Assoc 9:438–444.  https://doi.org/10.1016/j.jalz.2013.03.007 CrossRefGoogle Scholar
  12. 12.
    Lista S, Dubois B, Hampel H (2015) Paths to Alzheimer’s disease prevention: from modifiable risk factors to biomarker enrichment strategies. J Nutr Health Aging 19:154–163.  https://doi.org/10.1007/s12603-014-0515-3 CrossRefPubMedGoogle Scholar
  13. 13.
    Brooks BR (1994) El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci 124(Suppl):96–107CrossRefGoogle Scholar
  14. 14.
    Al-Chalabi A, Hardiman O, Kiernan MC et al (2016) Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol 15:1182–1194.  https://doi.org/10.1016/S1474-4422(16)30199-5 CrossRefPubMedGoogle Scholar
  15. 15.
    Vu LT, Bowser R (2016) Fluid-based biomarkers for amyotrophic lateral sclerosis. Neurother J Am Soc Exp Neurother 14:119–134.  https://doi.org/10.1007/s13311-016-0503-x CrossRefGoogle Scholar
  16. 16.
    Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746.  https://doi.org/10.1016/S1474-4422(07)70178-3 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dubois B, Feldman HH, Jacova C et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629.  https://doi.org/10.1016/S1474-4422(14)70090-0 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc 7:263–269.  https://doi.org/10.1016/j.jalz.2011.03.005 CrossRefGoogle Scholar
  19. 19.
    Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc 7:270–279.  https://doi.org/10.1016/j.jalz.2011.03.008 CrossRefGoogle Scholar
  20. 20.
    Jack CR, Bennett DA, Blennow K et al (2016) A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87:539–547.  https://doi.org/10.1212/WNL.0000000000002923 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc 7:280–292.  https://doi.org/10.1016/j.jalz.2011.03.003 CrossRefGoogle Scholar
  22. 22.
    Jack CR, Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216.  https://doi.org/10.1016/S1474-4422(12)70291-0 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord Off J Mov Disord Soc 30:1591–1601.  https://doi.org/10.1002/mds.26424 CrossRefGoogle Scholar
  24. 24.
    Dubois B, Feldman HH, Jacova C et al (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127.  https://doi.org/10.1016/S1474-4422(10)70223-4 CrossRefPubMedGoogle Scholar
  25. 25.
    Berg D, Postuma RB, Adler CH et al (2015) MDS research criteria for prodromal Parkinson’s disease. Mov Disord Off J Mov Disord Soc 30:1600–1611.  https://doi.org/10.1002/mds.26431 CrossRefGoogle Scholar
  26. 26.
    McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872.  https://doi.org/10.1212/01.wnl.0000187889.17253.b1 CrossRefPubMedGoogle Scholar
  27. 27.
    Gorno-Tempini ML, Hillis AE, Weintraub S et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014.  https://doi.org/10.1212/WNL.0b013e31821103e6 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Piguet O, Hornberger M, Mioshi E, Hodges JR (2011) Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. Lancet Neurol 10:162–172.  https://doi.org/10.1016/S1474-4422(10)70299-4 CrossRefPubMedGoogle Scholar
  29. 29.
    Gilman S, Wenning GK, Low PA et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676.  https://doi.org/10.1212/01.wnl.0000324625.00404.15 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Litvan I, Agid Y, Calne D et al (1996) Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47:1–9CrossRefGoogle Scholar
  31. 31.
    Armstrong MJ, Litvan I, Lang AE et al (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80:496–503.  https://doi.org/10.1212/WNL.0b013e31827f0fd1 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chen-Plotkin AS (2014) Unbiased approaches to biomarker discovery in neurodegenerative diseases. Neuron 84:594–607.  https://doi.org/10.1016/j.neuron.2014.10.031 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ahmed RM, Devenney EM, Irish M et al (2016) Neuronal network disintegration: common pathways linking neurodegenerative diseases. J Neurol Neurosurg Psychiatry 87:1234–1241.  https://doi.org/10.1136/jnnp-2014-308350 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pievani M, Filippini N, van den Heuvel MP et al (2014) Brain connectivity in neurodegenerative diseases—from phenotype to proteinopathy. Nat Rev Neurol 10:620–633.  https://doi.org/10.1038/nrneurol.2014.178 CrossRefPubMedGoogle Scholar
  35. 35.
    Warren JD, Rohrer JD, Schott JM et al (2013) Molecular nexopathies: a new paradigm of neurodegenerative disease. Trends Neurosci 36:561–569.  https://doi.org/10.1016/j.tins.2013.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hyman BT, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc 8:1–13.  https://doi.org/10.1016/j.jalz.2011.10.007 CrossRefGoogle Scholar
  37. 37.
    Skrobot OA, Attems J, Esiri M et al (2016) Vascular cognitive impairment neuropathology guidelines (VCING): the contribution of cerebrovascular pathology to cognitive impairment. Brain 139:2957–2969.  https://doi.org/10.1093/brain/aww214 CrossRefPubMedGoogle Scholar
  38. 38.
    Kovacs GG, Milenkovic I, Wöhrer A et al (2013) Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: a community-based autopsy series. Acta Neuropathol (Berl) 126:365–384.  https://doi.org/10.1007/s00401-013-1157-y CrossRefGoogle Scholar
  39. 39.
    Hampel H, O’Bryant SE, Durrleman S et al (2017) A precision medicine initiative for Alzheimer’s disease: the road ahead to biomarker-guided integrative disease modeling. Climacteric 20:107–118.  https://doi.org/10.1080/13697137.2017.1287866 CrossRefPubMedGoogle Scholar
  40. 40.
    Lista S, Khachaturian ZS, Rujescu D et al (2016) Application of systems theory in longitudinal studies on the origin and progression of Alzheimer’s disease. Methods Mol Biol Clifton NJ 1303:49–67.  https://doi.org/10.1007/978-1-4939-2627-5_2 CrossRefGoogle Scholar
  41. 41.
    Vidal M (2009) A unifying view of 21st century systems biology. FEBS Lett 583:3891–3894.  https://doi.org/10.1016/j.febslet.2009.11.024 CrossRefPubMedGoogle Scholar
  42. 42.
    Geerts H, Dacks PA, Devanarayan V et al (2016) Big data to smart data in Alzheimer’s disease: the brain health modeling initiative to foster actionable knowledge. Alzheimers Dement J Alzheimers Assoc 12:1014–1021.  https://doi.org/10.1016/j.jalz.2016.04.008 CrossRefGoogle Scholar
  43. 43.
    Haas M, Stephenson D, Romero K et al (2016) Big data to smart data in Alzheimer’s disease: real-world examples of advanced modeling and simulation. Alzheimers Dement J Alzheimers Assoc 12:1022–1030.  https://doi.org/10.1016/j.jalz.2016.05.005 CrossRefGoogle Scholar
  44. 44.
    Carrillo MC, Bain LJ, Frisoni GB, Weiner MW (2012) Worldwide Alzheimer’s disease neuroimaging initiative. Alzheimers Dement J Alzheimers Assoc 8:337–342.  https://doi.org/10.1016/j.jalz.2012.04.007 CrossRefGoogle Scholar
  45. 45.
    Parkinson Progression Marker Initiative (2011) The Parkinson Progression Marker Initiative (PPMI). Prog Neurobiol 95:629–635.  https://doi.org/10.1016/j.pneurobio.2011.09.005 CrossRefGoogle Scholar
  46. 46.
    McCann H, Stevens CH, Cartwright H, Halliday GM (2014) α-Synucleinopathy phenotypes. Parkinsonism Relat Disord 20(Suppl 1):S62–S67.  https://doi.org/10.1016/S1353-8020(13)70017-8 CrossRefPubMedGoogle Scholar
  47. 47.
    Reitz C (2016) Toward precision medicine in Alzheimer’s disease. Ann Transl Med 4:107.  https://doi.org/10.21037/atm.2016.03.05 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Group F-NBW (2016) FDA-NIH Biomarker Working Group. Food and Drug Administration (US)Google Scholar
  49. 49.
    O’Bryant SE, Edwards M, Johnson L et al (2016) A blood screening test for Alzheimer’s disease. Alzheimers Dement (Amst) 3:83–90.  https://doi.org/10.1016/j.dadm.2016.06.004 CrossRefGoogle Scholar
  50. 50.
    Henchcliffe C, Dodel R, Beal MF (2011) Biomarkers of Parkinson’s disease and dementia with Lewy bodies. Prog Neurobiol 95:601–613.  https://doi.org/10.1016/j.pneurobio.2011.09.002 CrossRefPubMedGoogle Scholar
  51. 51.
    Ho GJ, Liang W, Waragai M et al (2011) Bridging molecular genetics and biomarkers in Lewy body and related disorders. Int J Alzheimers Dis 2011:e842475.  https://doi.org/10.4061/2011/842475 CrossRefGoogle Scholar
  52. 52.
    Shtilbans A, Henchcliffe C (2012) Biomarkers in Parkinson’s disease: an update. Curr Opin Neurol 25:460–465.  https://doi.org/10.1097/WCO.0b013e3283550c0d CrossRefPubMedGoogle Scholar
  53. 53.
    Durrenberger PF, Fernando FS, Kashefi SN et al (2015) Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J Neural Transm (Vienna) 122:1055–1068.  https://doi.org/10.1007/s00702-014-1293-0 CrossRefGoogle Scholar
  54. 54.
    Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477.  https://doi.org/10.1038/nri3705 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Filippo Baldacci
    • 1
    • 2
    • 3
    • 4
    • 5
  • Simone Lista
    • 1
    • 2
    • 3
    • 4
  • Sid E. O’Bryant
    • 6
  • Roberto Ceravolo
    • 5
  • Nicola Toschi
    • 7
    • 8
    • 9
  • Harald Hampel
    • 1
    • 2
    • 3
    • 4
  • for the Alzheimer Precision Medicine Initiative (APMI)
  1. 1.AXA Research Fund & UPMC ChairParisFrance
  2. 2.Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM)Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpitalParisFrance
  3. 3.Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225Boulevard de l’hôpitalParisFrance
  4. 4.Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de NeurologieHôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpitalParisFrance
  5. 5.Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
  6. 6.Institute for Healthy AgingUniversity of North Texas Health Science CenterFort WorthUSA
  7. 7.Department of Biomedicine and PreventionUniversity of Rome “Tor Vergata”RomeItaly
  8. 8.Department of Radiology“Athinoula A. Martinos”Center for Biomedical ImagingBostonUSA
  9. 9.Harvard Medical SchoolBostonUSA

Personalised recommendations