Validation of a Chemiluminescence Immunoassay for Measuring Amyloid-β in Human Blood Plasma

  • Jonathan Vogelgsang
  • Jens Wiltfang
  • Hans W. KlafkiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1750)


The technical performance of immunological assays and their suitability for the intended use should be carefully validated before implementation in research, clinical studies or routine. We describe here the evaluation of a sandwich electrochemiluminescence immunoassay for measuring total Amyloid-β levels in human blood plasma as an example of a laboratory protocol for a partial “fit for purpose” assay performance validation. We tested two different assay protocols and addressed impact of sample dilution, parallelism, intra- and inter-assay variance, lower limit of quantification, lower limit of detection, and analytical spike recoveries.

Key words

Amyloid-β peptide Immunoassay Alzheimer’s disease Biomarker Assay validation 



This work was supported by the BioPharma-Neuroallianz (grant 16GW0096). Prof. Jens Wiltfang is supported by an Ilídio Pinho professorship and iBiMED (UID/BIM/04501/2013), at the University of Aveiro. We thank Anke Jahn-Brodmann for technical assistance and Ulrike Heinze for the collection and preparation of EDTA-plasma samples.


  1. 1.
    Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, Hölttä M, Rosén C, Olsson C, Strobel G, Wu E, Dakin K, Petzold M, Blennow K, Zetterberg H (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 15:673–684. CrossRefPubMedGoogle Scholar
  2. 2.
    Wiltfang J, Esselmann H, Bibl M et al (2007) Amyloid beta peptide ratio 42/40 but not A beta 42 correlates with phospho-Tau in patients with low- and high-CSF A beta 40 load. J Neurochem 101(4):1053–1059. CrossRefPubMedGoogle Scholar
  3. 3.
    Janelidze S, Zetterberg H, Mattsson N et al (2016) CSF Abeta42/Abeta40 and Abeta42/Abeta38 ratios: better diagnostic markers of Alzheimer disease. Ann Clin Transl Neurol 3(3):154–165. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Klafki HW, Hafermann H, Bauer C et al (2016) Validation of a commercial chemiluminescence immunoassay for the simultaneous measurement of three different amyloid-beta peptides in human cerebrospinal fluid and application to a clinical cohort. J Alzheimers Dis 54(2):691–705. CrossRefPubMedGoogle Scholar
  5. 5.
    Lewczuk P, Matzen A, Blennow K et al (2017) Cerebrospinal fluid Abeta42/40 corresponds better than Abeta42 to amyloid PET in Alzheimer’s disease. J Alzheimers Dis 55(2):813–822. CrossRefPubMedGoogle Scholar
  6. 6.
    Hansson O, Stomrud E, Vanmechelen E et al (2012) Evaluation of plasma Abeta as predictor of Alzheimer’s disease in older individuals without dementia: a population-based study. J Alzheimers Dis 28(1):231–238. CrossRefPubMedGoogle Scholar
  7. 7.
    Gronewold J, Todica O, Klafki HW et al (2016) Association of plasma beta-amyloid with cognitive performance and decline in chronic kidney disease. Mol Neurobiol.
  8. 8.
    Zetterberg H, Mattsson N, Blennow K et al (2010) Use of theragnostic markers to select drugs for phase II/III trials for Alzheimer disease. Alzheimers Res Ther 2(6):32. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Song L, Lachno DR, Hanlon D et al (2016) A digital enzyme-linked immunosorbent assay for ultrasensitive measurement of amyloid-beta 1-42 peptide in human plasma with utility for studies of Alzheimer’s disease therapeutics. Alzheimers Res Ther 8(1):58. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Andreasson U, Perret-Liaudet A, van Waalwijk van Doorn LJ et al (2015) A practical guide to immunoassay method validation. Front Neurol 6:179. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Long GL, Winefordner JD (1983) Limit of detection. Anal Chem 55(7):A712–A724. CrossRefGoogle Scholar
  12. 12.
    Thomsen V, Schatzlein D, Mercuro D (2003) Limits of detection in spectroscopy. Spectroscopy 18(12):112–114Google Scholar
  13. 13.
    Plikaytis BD, Holder PF, Pais LB et al (1994) Determination of parallelism and nonparallelism in bioassay dilution curves. J Clin Microbiol 32(10):2441–2447PubMedPubMedCentralGoogle Scholar
  14. 14.
    van Waalwijk van Doorn LJ, Koel-Simmelink MJ, Haussmann U et al (2016) Validation of soluble APP assays as diagnostic CSF biomarkers for neurodegenerative diseases. J Neurochem 137:112–121. CrossRefGoogle Scholar
  15. 15.
    Whitcomb BW, Schisterman EF (2008) Assays with lower detection limits: implications for epidemiological investigations. Paediatr Perinat Epidemiol 22(6):597–602. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Watt AD, Perez KA, Rembach AR et al (2012) Variability in blood-based amyloid-beta assays: the need for consensus on pre-analytical processing. J Alzheimers Dis 30(2):323–336. CrossRefPubMedGoogle Scholar
  17. 17.
    Lewczuk P, Kornhuber J, Wiltfang J (2006) The German competence net dementias: standard operating procedures for the neurochemical dementia diagnostics. J Neural Transm 113(8):1075–1080. CrossRefPubMedGoogle Scholar
  18. 18.
    Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI 2) procedures manual. Accessed 6 Jan 2017
  19. 19.
    Thermo Fisher Scientific, Good Laboratory Pipetting Guide (2010). Accessed 6 Jan 2017
  20. 20.
    Wood WG (1991) Matrix effects in immunoassays. Scand J Clin Lab Invest 51:105–112. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Jonathan Vogelgsang
    • 1
  • Jens Wiltfang
    • 1
    • 2
    • 3
  • Hans W. Klafki
    • 1
    Email author
  1. 1.Department of Psychiatry and PsychotherapyUniversity Medical Center Goettingen, Georg-August-UniversityGoettingenGermany
  2. 2.German Center for Neurodegenerative Diseases (DZNE)GoettingenGermany
  3. 3.Medical Sciences Department, iBiMEDUniversity of AveiroAveiroPortugal

Personalised recommendations