CSF N-Glycomics Using MALDI MS Techniques in Alzheimer’s Disease

  • Angelo Palmigiano
  • Angela Messina
  • Rosaria Ornella Bua
  • Rita Barone
  • Luisa Sturiale
  • Mario Zappia
  • Domenico GarozzoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1750)


In this chapter, we present the methodology currently applied in our laboratory for the structural elucidation of the cerebrospinal fluid (CSF) N-glycome. N-glycans are released from denatured carboxymethylated glycoproteins by digestion with peptide-N-glycosidase F (PNGase F) and purified using both C18 Sep-Pak® and porous graphitized carbon (PGC) HyperSep™ Hypercarb™ solid-phase extraction (SPE) cartridges. The glycan pool is subsequently permethylated to increase mass spectrometry sensitivity. Molecular assignments are performed through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) analysis considering either the protein N-linked glycosylation pathway or MALDI TOF MS/MS data. Each stage has been optimized to obtain high-quality mass spectra in reflector mode with an optimal signal-to-noise ratio up to m/z 4800. This method has been successfully adopted to associate specific N-glycome profiles to the early and the advanced phases of Alzheimer’s disease.

Key words




Generous donation from Stellalucente Trust is gratefully acknowledged. This chapter is dedicated to our dear friend and colleague Francesco Le Pira, University of Catania, who too early passed away.


  1. 1.
    Schedin-Weiss S, Winblad B, Tjernberg LO (2014) The role of protein glycosylation in Alzheimer disease. FEBS J 281:46–62CrossRefPubMedGoogle Scholar
  2. 2.
    Palmigiano A, Barone R, Sturiale L et al (2016) CSF N-glycoproteomics for early diagnosis in Alzheimer’s disease. J Proteome 131:29–37CrossRefGoogle Scholar
  3. 3.
    Barone R, Sturiale L, Palmigiano A et al (2012) Glycomics of pediatric and adulthood diseases of the central nervous system. J Proteome 75:5123–5139CrossRefGoogle Scholar
  4. 4.
    Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saito T et al (2015) An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer’s disease. EMBO Mol Med 7:175–189CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kizuka Y, Nakano M, Kitazume S, Saito T et al (2016) Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J 473(1):21–30CrossRefPubMedGoogle Scholar
  6. 6.
    Kizuka Y, Kitazume S, Taniguchi N (2017) N-glycan and Alzheimer’s disease. Biochim Biophys Acta 1861(10):2447–2454. CrossRefPubMedGoogle Scholar
  7. 7.
    Stanley P, Schachter H, Taniguchi N (2009) N-glycans. In: Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  8. 8.
    Hoffmann A, Nimtz M, Getzlaff R, Conradt HS (1995) ‘Brain-type’ N-glycosylation of asialo-transferrin from human cerebrospinal fluid. FEBS Lett 359(2–3):164–168CrossRefPubMedGoogle Scholar
  9. 9.
    Royle LI, Campbell MP, Radcliffe CM, White DM, Harvey DJ et al (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 376:1–12CrossRefPubMedGoogle Scholar
  10. 10.
    Domon B, Costello CE (1988) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 5:397–409CrossRefGoogle Scholar
  11. 11.
    Schachter H (1986) Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem Cell Biol 64(3):163–181CrossRefPubMedGoogle Scholar
  12. 12.
    Akasaka-Manya K, Manya H, Sakurai Y et al (2010) Protective effect of N-glycan bisecting GlcNAc residues on β-amyloid production in Alzheimer’s disease. Glycobiology 20(1):99–106CrossRefPubMedGoogle Scholar
  13. 13.
    Avagyan H, Goldenson B, Tse E, Masoumi A et al (2009) Immune blood biomarkers of Alzheimer disease patients. J Neuroimmunol 210:67–72CrossRefPubMedGoogle Scholar
  14. 14.
    Ikeda Y, Ihara H, Tsukamoto H et al (2014) Mannosyl (beta-1,4-)-glycoprotein beta-1,4-N-acetylglucosaminyltransferase (MGAT3); β1,4-N-acetylglucosaminyltransferase III (GnT-III, GlcNAcT-III). In: Taniguchi N et al (eds) Handbook of glycosyltransferase and related genes, 2nd edn. Springer, TokyoGoogle Scholar
  15. 15.
    Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131:209–217CrossRefGoogle Scholar
  16. 16.
    Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM (2008) GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 7:1650–1659CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Angelo Palmigiano
    • 1
  • Angela Messina
    • 1
  • Rosaria Ornella Bua
    • 1
  • Rita Barone
    • 1
    • 2
  • Luisa Sturiale
    • 1
  • Mario Zappia
    • 3
  • Domenico Garozzo
    • 1
    Email author
  1. 1.CNR, Istituto per i Polimeri, Compositi e i Biomateriali CataniaCataniaItaly
  2. 2.Pediatric Neurology Unit, Department of PediatricsUniversity of CataniaCataniaItaly
  3. 3.Section of Neurosciences, Department of GF IngrassiaUniversity of CataniaCataniaItaly

Personalised recommendations