Advertisement

CSF Lipidomics Analysis: High-Resolution Mass Spectrometry Analytical Platform

  • Paul L. Wood
  • Randall L. Woltjer
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1750)

Abstract

High-resolution mass spectrometry provides the resolution required for direct infusion allowing detection and characterization of a vast array of lipids with a single injection. This chapter presents the methodology utilized for both unbiased and targeted lipidomics of cerebrospinal fluid.

Key words

High-resolution mass spectrometry Lipidomics CSF 

Notes

Acknowledgments

This work was supported by Lincoln Memorial University.

References

  1. 1.
    Kantae V, Ogino S, Noga M, Harms AC, van Dongen RM, Onderwater GL, van den Maagdenberg AM, Terwindt GM, van der Stelt M, Ferrari MD, Hankemeier T (2017) Quantitative profiling of endocannabinoids and related N-acylethanolamines in human CSF using nano LC-MS/MS. J Lipid Res 58:615–624CrossRefGoogle Scholar
  2. 2.
    Seyer A, Boudah S, Broudin S, Junot C, Colsch B (2016) Annotation of the human cerebrospinal fluid lipidome using high resolution mass spectrometry and a dedicated data processing workflow. Metabolomics 12:91CrossRefGoogle Scholar
  3. 3.
    Gonzalo H, Brieva L, Tatzber F, Jové M, Cacabelos D, Cassanyé A, Lanau-Angulo L, Boada J, Serrano JC, González C, Hernández L, Peralta S, Pamplona R, Portero-Otin M (2012) Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism. J Neurochem 123:622–634CrossRefGoogle Scholar
  4. 4.
    Koal T, Klavins K, Seppi D, Kemmler G, Humpel C (2015) Sphingomyelin SM(d18:1/18:0) is significantly enhanced in cerebrospinal fluid samples dichotomized by pathological amyloid-β42, tau, and phospho-tau-181 levels. J Alzheimers Dis 44:1193–1201CrossRefGoogle Scholar
  5. 5.
    Trushina E, Dutta T, Persson XM, Mielke MM, Petersen RC (2013) Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. PLoS One 8:e63644CrossRefGoogle Scholar
  6. 6.
    Kaddurah-Daouk R, Zhu H, Sharma S, Bogdanov M, Rozen SG, Matson W, Oki NO, Motsinger-Reif AA, Churchill E, Lei Z, Appleby D, Kling MA, Trojanowski JQ, Doraiswamy PM, Arnold SE, Pharmacometabolomics Research Network (2013) Alterations in metabolic pathways and networks in Alzheimer's disease. Transl Psychiatry 3:e244CrossRefGoogle Scholar
  7. 7.
    Ibáñez C, Simó C, Martín-Álvarez PJ, Kivipelto M, Winblad B, Cedazo-Mínguez A, Cifuentes A (2012) Toward a predictive model of Alzheimer’s disease progression using capillary electrophoresis-mass spectrometry metabolomics. Anal Chem 84:8532–8540CrossRefGoogle Scholar
  8. 8.
    Wood PL, Barnette BL, Kaye JA, Quinn JF, Woltjer RL (2015) Non-targeted lipidomics of CSF and frontal cortex gray and white matter in control, mild cognitive impairment, and Alzheimer’s disease subjects. Acta Neuropsychiatrica 27:270–278CrossRefGoogle Scholar
  9. 9.
    Wood PL (2017) Non-targeted lipidomics utilizing constant infusion high resolution ESI mass spectrometry. In Springer Protocols. Meuromethods. Lipidomics 125:13–19 (PL Wood, Ed)Google Scholar
  10. 10.
    Wood PL (2017) High-resolution mass spectrometry of glycerophospholipid oxidation products. In Springer Protocols Neuromethods. Lipidomics 125:237–241(PL Wood, Ed)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Metabolomics Unit, College of Veterinary MedicineLincoln Memorial UniversityHarrogateUSA
  2. 2.Department of NeurologyOregon Health Science University and Portland VA Medical CenterPortlandUSA

Personalised recommendations