Imaging of Microglial Activation in Alzheimer’s Disease by [11C]PBR28 PET

  • Cornelius K. Donat
  • Nazanin Mirzaei
  • Sac-Pham Tang
  • Paul Edison
  • Magdalena SastreEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1750)


Deficits in neuronal function and synaptic plasticity in Alzheimer’s disease (AD) are believed to be linked to microglial activation. A hallmark of reactive microglia is the upregulation of mitochondrial translocator protein (TSPO) expression. Positron emission tomography (PET) is a nuclear imaging technique that measures the distribution of trace doses of radiolabeled compounds in the body over time. PET imaging using the 2nd generation TSPO tracer [11C]PBR28 provides an opportunity for accurate visualization and quantification of changes in microglial density in transgenic mouse models of Alzheimer’s disease (AD). Here, we describe the methodology for the in vivo use of [11C]PBR28 in AD patients and the 5XFAD transgenic mouse model of AD and compare the results against healthy individuals and wild-type controls. To confirm the results, autoradiography with [3H]PBR28 and immunochemistry was carried out in the same mouse brains. Our data shows that [11C]PBR28 is suitable as a tool for in vivo monitoring of microglial activation and may be useful to assess treatment response in future studies.

Key words

TSPO Microglia Alzheimer’s disease PET Autoradiography Animal mouse model In vivo imaging 


  1. 1.
    Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001) In-vivo measurement of activated microglia in dementia. Lancet 358:461–467CrossRefGoogle Scholar
  2. 2.
    Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R et al (2009) Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology 72:56–62CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Heneka MT, Sastre M, Dumitrescu-Ozimek L, Dewachter I, Walter J, Klockgether T, Leuven V (2005) Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP(V717I) transgenic mice. J Neuroinflammation 2:22CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Solito S, Sastre M (2012) Microglia function in Alzheimer’s disease. Front Neuropharmacol 3:14Google Scholar
  5. 5.
    Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28(33):8354–8360CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I et al (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661CrossRefPubMedGoogle Scholar
  7. 7.
    Grathwohl SA, Kälin RE, Bolmont T, Prokop S, Winkelmann G et al (2009) Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 12:1361–1363CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Olmos-Alonso A, Schetters ST, Sri S, Askew K, Mancuso R, Vargas-Caballero M, Holscher C, Perry VH, Gomez-Nicola D (2016) Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 139(Pt 3):891–907CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Matthews PM, Rabiner EA, Passchier J, Gunn RN (2012) Positron emission tomography molecular imaging for drug development. Br J Clin Pharm 73(2):175–186CrossRefGoogle Scholar
  10. 10.
    Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF (2009) Performance evaluation of the inveon dedicated PET preclinical tomography based on the NEMA-NU4 standards. J Nucl Med 50(3):401–408CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cherry SR, Gambhir S (2001) Use of positron emission tomography in animal research. ILAR J 42(3):219–232CrossRefPubMedGoogle Scholar
  12. 12.
    Myers R, Hume SP (2002) Small animal PET. Eur Neuropsychopharmacol 12(6):545–555CrossRefPubMedGoogle Scholar
  13. 13.
    Tai Y-C, Ruangma A, Rowland et al (2005) Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA-NU4 standards. J Nucl Med 46:455–463PubMedGoogle Scholar
  14. 14.
    Papadopoulos V, Baraldi M, Guilarte TR, Knudsen TB et al (2006) Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci 27(8):402–409CrossRefPubMedGoogle Scholar
  15. 15.
    Chen MK, Guilarte TR (2008) Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 118(1):1–17CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Su Z, Roncaroli F, Durrenberger PF et al (2013) [(1)(1)C]-(R)PK11195 tracer kinetics in the brain of glioma patients and a comparison of two referencing approaches. Eur J Nucl Med Mol Imaging 40(9):1406–1419CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, Groyer G, Adams D, Schumacher M (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9(12):971–988CrossRefPubMedGoogle Scholar
  18. 18.
    Morohaku K, Pelton SH, Daugherty DJ, Butler WR, Deng W, Selvaraj V (2014) Translocator protein/peripheral benzodiazepine receptor is not required for steroid hormone biosynthesis. Endocrinology 155(1):89–97CrossRefPubMedGoogle Scholar
  19. 19.
    Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis. Brain 123:2321–2337CrossRefGoogle Scholar
  20. 20.
    Benavides J, Quarteronet D, Imbault F, Malgouris C, Uzan A, Renault C et al (1983) Labelling of “peripheral-type” benzodiazepine binding sites in the rat brain by using [3H]PK 11195, an isoquinoline carboxamide derivative: kinetic studies and autoradiographic localization. J Neurochem 41:1744–1750CrossRefPubMedGoogle Scholar
  21. 21.
    Gehlert DR, Yamamura HI, Wamsley JK (1983) Autoradiographic localization of “peripheral” benzodiazepine binding sites in the rat brain and kidney using [3H]RO5-4864. Eur J Pharmacol 95:329–330CrossRefPubMedGoogle Scholar
  22. 22.
    Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S, Lee SC (2009) Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 35:306–328CrossRefGoogle Scholar
  23. 23.
    Scarf AM, Ittner LM, Kassiou M (2009) The translocator protein (18 kDa): central nervous system disease and drug design. J Med Chem 52(3):581–592CrossRefPubMedGoogle Scholar
  24. 24.
    Dickens AM, Vainio S, Marjamäki P, Johansson J, Lehtiniemi P, Rokka J, Rinne J, Solin O, Haaparanta-Solin M, Jones PA, Trigg W, Anthony DC, Airas L (2014) Detection of microglial activation in an acute model of neuroinflammation using PET and radiotracers 11C-(R)-PK11195 and 18F-GE-180. J Nucl Med 55:466–472CrossRefPubMedGoogle Scholar
  25. 25.
    Janssen B et al (2016) Imaging of neuroinflammation in Alzheimer’s disease, multiple sclerosis and stroke: recent developments in positron emission tomography. Biochim Biophys Acta 1862(3):425–441CrossRefPubMedGoogle Scholar
  26. 26.
    Venneti S, Lopresti BJ, Wang G, Hamilton RL, Mathis CA, Klunk WE, Apte UM, Wiley CA (2009) PK11195 labels activated microglia in Alzheimer’s disease and in vivo in a mouse model using PET. Neurobiol Aging 30:1217–1226CrossRefPubMedGoogle Scholar
  27. 27.
    Venneti S, Wiley CA, Kofler J (2009) Imaging microglial activation during neuroinflammation and Alzheimer’s disease. J Neuroimmune Pharmacol 4:227–243CrossRefGoogle Scholar
  28. 28.
    Le Fur G, Vaucher N, Perrier ML, Flamier A, Benavides J, Renault C et al (1983) Differentiation between two ligands for peripheral benzodiazepine binding sites, [3H]RO5-4864 and [3H]PK 11195, by thermodynamic studies. Life Sci 33(5):449–457CrossRefPubMedGoogle Scholar
  29. 29.
    Guo Q, Colasanti A, Owen DR, Onega M, Kamalakaran A, Bennacef I, Matthews PM, Rabiner EA, Turkheimer FE, Gunn RN (2013) Quantification of the specific translocator protein signal of 18F-PBR111 in healthy humans: a genetic polymorphism effect on in vivo binding. J Nucl Med 54:1915–1923CrossRefGoogle Scholar
  30. 30.
    Dupont AC, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Tronel C, Arlicot N (2017) Translocator protein-18 kDa (TSPO) positron emission tomography (PET) imaging and its clinical impact in neurodegenerative diseases. Int J Mol Sci 18(4):pii: E785CrossRefGoogle Scholar
  31. 31.
    Tronel C, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Dupont AC, Arlicot N (2017) Molecular targets for PET imaging of activated microglia: the current situation and future expectations. Int J Mol Sci 18(4):pii: E802CrossRefGoogle Scholar
  32. 32.
    Holland JP, Liang SH, Rotstein BH, Collier TL, Stephenson NA, Greguric I, Vasdev N (2014) Alternative approaches for PET radiotracer development in Alzheimer’s disease: imaging beyond plaque. J Labelled Comp Radiopharm 57:323–331CrossRefPubMedGoogle Scholar
  33. 33.
    Chauveau F, Van Camp N, Dollé F, Kuhnast B, Hinnen F, Damont A, Boutin H, James M, Kassiou M, Tavitian B (2009) Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med 50:468–476CrossRefGoogle Scholar
  34. 34.
    Luus C, Hanani R, Reynolds A, Kassiou M (2010) The development of PET radioligands for imaging the translocator protein (18 kDa): what have we learned? J Lab Comp Radiopharm 53:501–510Google Scholar
  35. 35.
    Owen DR, Matthews PM (2011) Imaging brain microglial activation using positron emission tomography and translocator protein-specific radioligands. Int Rev Neurobiol 101:19–39CrossRefPubMedGoogle Scholar
  36. 36.
    Jensen P, Feng L, Law I, Svarer C, Knudsen GM, Mikkelsen JD et al (2015) TSPO imaging in glioblastoma multiforme: a direct comparison between 123I-CLINDE SPECT, 18F-FET PET, and gadolinium-enhanced MR imaging. J Nucl Med 56(9):1386–1390CrossRefPubMedGoogle Scholar
  37. 37.
    Mirzaei N, Tang SP, Ashworth S, Coello C, Plisson C, Passchier J et al (2016) In vivo imaging of microglial activation by positron emission tomography with [(11)C]PBR28 in the 5XFAD model of Alzheimer’s disease. Glia 64(6):993–1006PubMedGoogle Scholar
  38. 38.
    Liu B, Le KX, Park MA, Wang S, Belanger AP, Dubey S, Frost JL, Holton P, Reiser V, Jones PA, Trigg W, Di Carli MF, Lemere CA (2015) In vivo detection of age- and disease-related increases in neuroinflammation by 18F-GE180 TSPO MicroPET imaging in wild-type and Alzheimer’s transgenic mice. J Neurosci 35:15716–15730CrossRefPubMedGoogle Scholar
  39. 39.
    English SJ, Diaz JA, Shao X, Gordon D, Bevard M, Su G et al (2014) Utility of (18) F-FDG and (11)C-PBR28 microPET for the assessment of rat aortic aneurysm inflammation. EJNMMI Res 4(1):20CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Walker MD, Dinelle K, Kornelsen R, Lee NV, Miao Q, Adam M et al (2015) [11C]PBR28 PET imaging is sensitive to neuroinflammation in the aged rat. J Cereb Blood Flow Metab 35(8):1331–1338CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hammers A, Chen C-H, Lemieux L, Allom R et al (2007) Statistical neuroanatomy of the human inferior frontal gyrus and probabilistic atlas in a standard stereotaxic space. Hum Brain Mapp 28:34–48CrossRefPubMedGoogle Scholar
  42. 42.
    Giron MC (2009) Radiopharmaceutical pharmacokinetics in animals: critical considerations. Q J Nucl Med Mol Imaging 53(4):359–364PubMedGoogle Scholar
  43. 43.
    Barthe N, Maitrejean S, Cardona A (2012) Handbook of radioactivity analysis, 3rd Revised edn. Academic Press, OxfordCrossRefGoogle Scholar
  44. 44.
    Pike VW (2009) PET radiotracers: crossing the blood-brain barrier and surviving metabolism. Trends Pharmacol Sci 30(8):431–440CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Varnas K, Varrone A, Farde L (2013) Modeling of PET data in CNS drug discovery and development. J Pharmacokinet Pharmacodyn 40(3):267–279CrossRefPubMedGoogle Scholar
  46. 46.
    Olson JM, Ciliax BJ, Mancini WR, Young AB (1988) Presence of peripheral-type benzodiazepine binding sites on human erythrocyte membranes. Eur J Pharmacol 152:47–53CrossRefPubMedGoogle Scholar
  47. 47.
    Canat X, Carayon P, Bouaboula M, Cahard D, Shire D, Roque C et al (1993) Distribution profile and properties of peripheral-type benzodiazepine receptors on human hemopoietic cells. Life Sci 52:107–118CrossRefPubMedGoogle Scholar
  48. 48.
    Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A et al (2012) An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 32:1–5CrossRefGoogle Scholar
  49. 49.
    Park E et al (2015) (11)C-PBR28 imaging in multiple sclerosis patients and healthy controls: test-retest reproducibility and focal visualization of active white matter areas. Eur J Nucl Med Mol Imaging 42(7):1081–1092CrossRefPubMedGoogle Scholar
  50. 50.
    Yoder KK et al (2013) Influence of TSPO genotype on 11C-PBR28 standardized uptake values. J Nucl Med 54(8):1320–1322CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Fan Z et al (2015) Can studies of neuroinflammation in a TSPO genetic subgroup (HAB or MAB) be applied to the entire AD cohort? J Nucl Med 56(5):707–713CrossRefGoogle Scholar
  52. 52.
    Kreisl WC et al (2016) (11)C-PBR28 binding to translocator protein increases with progression of Alzheimer’s disease. Neurobiol Aging 44:53–61CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kreisl WC et al (2013) In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain 136(Pt 7):2228–2238CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Nair A et al (2016) Test-retest analysis of a non-invasive method of quantifying [11C]-PBR28 binding in Alzheimer’s disease. EJNMMI Res 6(1):72CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Schuitemaker A et al (2013) Microglial activation in Alzheimer’s disease: an (R)-[(1)(1)C]PK11195 positron emission tomography study. Neurobiol Aging 34(1):128–136CrossRefGoogle Scholar
  56. 56.
    Shipkova M et al (2000) Determination of the acyl glucuronide metabolite of mycophenolic acid in human plasma by HPLC and emit. Clin Chem 46(3):365–372PubMedGoogle Scholar
  57. 57.
    Innis RB et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27(9):1533–1539CrossRefPubMedGoogle Scholar
  58. 58.
    Hinz R, Boellaard R (2015) Challenges of quantification of TSPO in the human brain. Clin Transl Imaging 3(6):403–416CrossRefGoogle Scholar
  59. 59.
    Rizzo G et al (2014) Kinetic modeling without accounting for the vascular component impairs the quantification of [(11)C]PBR28 brain PET data. J Cereb Blood Flow Metab 34(6):1060–1069CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Veronese M et al (2017) Kinetic modelling of [11C]PBR28 for 18 kDa translocator protein PET data: a validation study of vascular modelling in the brain using XBD173 and tissue analysis. J Cereb Blood Flow Metab:271678X17712388Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Cornelius K. Donat
    • 1
  • Nazanin Mirzaei
    • 1
  • Sac-Pham Tang
    • 2
  • Paul Edison
    • 1
  • Magdalena Sastre
    • 1
    Email author
  1. 1.Division of Brain SciencesImperial College London, Hammersmith HospitalLondonUK
  2. 2.Imanova LimitedLondonUK

Personalised recommendations