Advertisement

Population-Based Approaches to Alzheimer’s Disease Prevention

  • Robert Perneczky
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1750)

Abstract

Progress in prevention and treatment of Alzheimer’s disease (AD) and dementia is hampered by the restricted understanding of the biological and environmental causes underlying pathophysiology. It is widely accepted that certain genetic factors are associated with AD and a number of lifestyle and other environmental characteristics have also been linked to dementia risk. However, interactions between genes and the environment are not yet well understood, and coordinated global action is required to utilize existing cohorts and other resources effectively and efficiently to identify new avenues for dementia prevention. This chapter provides a brief summary of current research on risk and protective factors and opportunities and challenges in relation to population-based approaches are discussed.

Key words

Alzheimer’s disease Dementia Drug development Population-based Cohort studies Lifestyle Environment Genetics 

Notes

Acknowledgments

The author would like to thank the following individuals for their valuable contribution to the chapter: Profs Lefkos Middleton (Imperial College London, UK); Miia Kivipelto and Laura Fratiglioni (Karolinska Institutet Stockholm, Sweden); M. Arfan Ikram (Erasmus University Medical Center Rotterdam, The Netherlands); and Pascale Barberger-Gateau and Cécilia Samieri (Inserm U1219 and Bordeaux University, France).

References

  1. 1.
    Hutter CM, Mechanic LE, Chatterjee N et al (2013) Gene-environment interactions in cancer epidemiology: a National Cancer Institute Think Tank report. Genet Epidemiol 37(7):643–657.  https://doi.org/10.1002/gepi.21756 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    The Lancet Neurology (2014) G8 dementia summit: a chance for united action. Lancet Neurol 13(1):1.  https://doi.org/10.1016/S1474-4422(13)70275-8 CrossRefPubMedGoogle Scholar
  3. 3.
    Prince M, Wimo A, Guerchet M et al. (2015) World Alzheimer Report 2015—The Global Impact of Dementia: an analysis of prevalence, incidence, cost and trend. London, UK: Alzheimer’s Disease InternationalGoogle Scholar
  4. 4.
    Scheltens P, Blennow K, Breteler MM et al (2016) Alzheimer’s disease. Lancet 388(10043):505–517.  https://doi.org/10.1016/S0140-6736(15)01124-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Lambert JC, Ibrahim-Verbaas CA, Harold D et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45(12):1452–1458.  https://doi.org/10.1038/ng.2802 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Terracciano A, Sutin AR, An Y et al (2014) Personality and risk of Alzheimer’s disease: new data and meta-analysis. Alzheimers Dement 10(2):179–186.  https://doi.org/10.1016/j.jalz.2013.03.002 CrossRefPubMedGoogle Scholar
  7. 7.
    JPND. Longitudinal cohort studies in neurodegeneration research. Report of the JPND Action Group (2013)Google Scholar
  8. 8.
    Elbaz A, Dufouil C, Alperovitch A (2007) Interaction between genes and environment in neurodegenerative diseases. C R Biol 330(4):318–328.  https://doi.org/10.1016/j.crvi.2007.02.018 CrossRefPubMedGoogle Scholar
  9. 9.
    Barberger-Gateau P, Lambert JC, Feart C et al (2013) From genetics to dietetics: the contribution of epidemiology to understanding Alzheimer’s disease. J Alzheimers Dis 33(Suppl 1):S457–S463.  https://doi.org/10.3233/JAD-2012-129019 CrossRefPubMedGoogle Scholar
  10. 10.
    Ferrari C, WL X, Wang HX et al (2013) How can elderly apolipoprotein E epsilon4 carriers remain free from dementia? Neurobiol Aging 34(1):13–21.  https://doi.org/10.1016/j.neurobiolaging.2012.03.003 CrossRefPubMedGoogle Scholar
  11. 11.
    Yang Z, Slavin MJ, Sachdev PS (2013) Dementia in the oldest old. Nat Rev Neurol 9(7):382–393.  https://doi.org/10.1038/nrneurol.2013.105 CrossRefPubMedGoogle Scholar
  12. 12.
    Barberger-Gateau P, Samieri C, Feart C et al (2011) Dietary omega 3 polyunsaturated fatty acids and Alzheimer’s disease: interaction with apolipoprotein E genotype. Curr Alzheimer Res 8(5):479–491CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hofman A, Ott A, Breteler MM et al (1997) Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet 349(9046):151–154.  https://doi.org/10.1016/S0140-6736(96)09328-2 CrossRefPubMedGoogle Scholar
  14. 14.
    Rovio S, Kareholt I, Helkala EL et al (2005) Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol 4(11):705–711.  https://doi.org/10.1016/S1474-4422(05)70198-8 CrossRefPubMedGoogle Scholar
  15. 15.
    Cunnane SC, Plourde M, Pifferi F et al (2009) Fish, docosahexaenoic acid and Alzheimer’s disease. Prog Lipid Res 48(5):239–256.  https://doi.org/10.1016/j.plipres.2009.04.001 CrossRefPubMedGoogle Scholar
  16. 16.
    Clarke RJ, Bennett DA (2008) B vitamins for prevention of cognitive decline: insufficient evidence to justify treatment. JAMA 300(15):1819–1821.  https://doi.org/10.1001/jama.300.15.1819 CrossRefPubMedGoogle Scholar
  17. 17.
    Annweiler C, Montero-Odasso M, Llewellyn DJ et al (2013) Meta-analysis of memory and executive dysfunctions in relation to vitamin D. Journal Alzheimers Dis 37(1):147–171.  https://doi.org/10.3233/JAD-130452 CrossRefGoogle Scholar
  18. 18.
    Mapstone M, Cheema AK, Fiandaca MS et al (2014) Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 20(4):415–418.  https://doi.org/10.1038/nm.3466 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Feart C, Samieri C, Alles B et al (2013) Potential benefits of adherence to the Mediterranean diet on cognitive health. Proc Nutr Soc 72(1):140–152.  https://doi.org/10.1017/S0029665112002959 CrossRefPubMedGoogle Scholar
  20. 20.
    Martinez-Lapiscina EH, Clavero P, Toledo E et al (2013) Virgin olive oil supplementation and long-term cognition: the PREDIMED-NAVARRA randomized, trial. J Nutr Health Aging 17(6):544–552.  https://doi.org/10.1007/s12603-013-0027-6 CrossRefPubMedGoogle Scholar
  21. 21.
    Scheltens P, Twisk JW, Blesa R et al (2012) Efficacy of Souvenaid in mild Alzheimer’s disease: results from a randomized, controlled trial. J Alzheimers Dis 31(1):225–236.  https://doi.org/10.3233/JAD-2012-121189 CrossRefPubMedGoogle Scholar
  22. 22.
    Barberger-Gateau P, Feart C, Samieri C et al (2013) Dietary patterns and dementia. In: Yaffe K (ed) Chronic medical disease and cognitive aging: toward a healthy body and brain. Oxford University Press, New York, pp 197–224CrossRefGoogle Scholar
  23. 23.
    Quinn JF, Raman R, Thomas RG et al (2010) Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA 304(17):1903–1911.  https://doi.org/10.1001/jama.2010.1510 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Morris MC, Evans DA, Bienias JL et al (2002) Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA 287(24):3230–3237CrossRefPubMedGoogle Scholar
  25. 25.
    Luchsinger JA, Tang MX, Shea S et al (2002) Caloric intake and the risk of Alzheimer disease. Arch Neurol 59(8):1258–1263CrossRefPubMedGoogle Scholar
  26. 26.
    Kharrazi H, Vaisi-Raygani A, Rahimi Z et al (2008) Association between enzymatic and non-enzymatic antioxidant defense mechanism with apolipoprotein E genotypes in Alzheimer disease. Clin Biochem 41(12):932–936.  https://doi.org/10.1016/j.clinbiochem.2008.05.001 CrossRefPubMedGoogle Scholar
  27. 27.
    Lambert JC, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41(10):1094–1099.  https://doi.org/10.1038/ng.439 CrossRefPubMedGoogle Scholar
  28. 28.
    Sleegers K, Lambert JC, Bertram L et al (2010) The pursuit of susceptibility genes for Alzheimer’s disease: progress and prospects. Trends Genet 26(2):84–93.  https://doi.org/10.1016/j.tig.2009.12.004 CrossRefPubMedGoogle Scholar
  29. 29.
    Martinez-Lapiscina EH, Galbete C, Corella D et al (2014) Genotype patterns at CLU, CR1, PICALM and APOE, cognition and Mediterranean diet: the PREDIMED-NAVARRA trial. Genes Nutr 9(3):393.  https://doi.org/10.1007/s12263-014-0393-7 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Harslof LB, Larsen LH, Ritz C et al (2013) FADS genotype and diet are important determinants of DHA status: a cross-sectional study in Danish infants. Am J Clin Nutr 97(6):1403–1410.  https://doi.org/10.3945/ajcn.113.058685 CrossRefPubMedGoogle Scholar
  31. 31.
    Lemaitre RN, Tanaka T, Tang W et al (2011) Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS Genet 7(7):e1002193.  https://doi.org/10.1371/journal.pgen.1002193 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ferrucci L, Perry JR, Matteini A et al (2009) Common variation in the beta-carotene 15,15′-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study. Am J Hum Genet 84(2):123–133.  https://doi.org/10.1016/j.ajhg.2008.12.019 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kathiresan S, Willer CJ, Peloso GM et al (2009) Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41(1):56–65.  https://doi.org/10.1038/ng.291 CrossRefPubMedGoogle Scholar
  34. 34.
    van Meurs JB, Pare G, Schwartz SM et al (2013) Common genetic loci influencing plasma homocysteine concentrations and their effect on risk of coronary artery disease. Am J Clin Nutr 98(3):668–676.  https://doi.org/10.3945/ajcn.112.044545 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Scarmeas N, Luchsinger JA, Schupf N et al (2009) Physical activity, diet, and risk of Alzheimer disease. JAMA 302(6):627–637.  https://doi.org/10.1001/jama.2009.1144 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tolppanen AM, Solomon A, Kulmala J et al (2015) Leisure-time physical activity from mid- to late life, body mass index, and risk of dementia. Alzheimers Dement 11(4):434–443.e6.  https://doi.org/10.1016/j.jalz.2014.01.008 CrossRefPubMedGoogle Scholar
  37. 37.
    Wilson RS, Mendes De Leon CF, Barnes LL et al (2002) Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA 287(6):742–748CrossRefPubMedGoogle Scholar
  38. 38.
    Stern Y, Gurland B, Tatemichi TK et al (1994) Influence of education and occupation on the incidence of Alzheimer's disease. JAMA 271(13):1004–1010CrossRefPubMedGoogle Scholar
  39. 39.
    Paillard-Borg S, Fratiglioni L, Xu W et al (2012) An active lifestyle postpones dementia onset by more than one year in very old adults. J Alzheimers Dis 31(4):835–842.  https://doi.org/10.3233/JAD-2012-120724 CrossRefPubMedGoogle Scholar
  40. 40.
    Liu Y, Julkunen V, Paajanen T et al (2012) Education increases reserve against Alzheimer’s disease—evidence from structural MRI analysis. Neuroradiology 54(9):929–938.  https://doi.org/10.1007/s00234-012-1005-0 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Finkel D, Andel R, Gatz M et al (2009) The role of occupational complexity in trajectories of cognitive aging before and after retirement. Psychol Aging 24(3):563–573.  https://doi.org/10.1037/a0015511 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Karp A, Andel R, Parker MG et al (2009) Mentally stimulating activities at work during midlife and dementia risk after age 75: follow-up study from the Kungsholmen Project. Am J Geriatr Psychiatry 17(3):227–236.  https://doi.org/10.1097/JGP.0b013e318190b691 CrossRefPubMedGoogle Scholar
  43. 43.
    Stern Y (2012) Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 11(11):1006–1012.  https://doi.org/10.1016/S1474-4422(12)70191-6 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25(6):295–301CrossRefGoogle Scholar
  45. 45.
    Rovio S, Spulber G, Nieminen LJ et al (2010) The effect of midlife physical activity on structural brain changes in the elderly. Neurobiol Aging 31(11):1927–1936.  https://doi.org/10.1016/j.neurobiolaging.2008.10.007 CrossRefPubMedGoogle Scholar
  46. 46.
    Komulainen P, Pedersen M, Hanninen T et al (2008) BDNF is a novel marker of cognitive function in ageing women: the DR’s EXTRA Study. Neurobiol Learn Mem 90(4):596–603.  https://doi.org/10.1016/j.nlm.2008.07.014 CrossRefPubMedGoogle Scholar
  47. 47.
    Wang HX, Gustafson DR, Kivipelto M et al (2012) Education halves the risk of dementia due to apolipoprotein epsilon4 allele: a collaborative study from the Swedish brain power initiative. Neurobiol Aging 33(5):1007.e1–1007.e7.  https://doi.org/10.1016/j.neurobiolaging.2011.10.003 CrossRefGoogle Scholar
  48. 48.
    Wirth M, Villeneuve S, La Joie R et al (2014) Gene-environment interactions: lifetime cognitive activity, APOE genotype, and beta-amyloid burden. J Neurosci 34(25):8612–8617.  https://doi.org/10.1523/JNEUROSCI.4612-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Maioli S, Puerta E, Merino-Serrais P et al (2012) Combination of apolipoprotein E4 and high carbohydrate diet reduces hippocampal BDNF and arc levels and impairs memory in young mice. J Alzheimers Dis 32(2):341–355.  https://doi.org/10.3233/JAD-2012-120697 CrossRefPubMedGoogle Scholar
  50. 50.
    Ferencz B, Laukka EJ, Welmer AK et al (2014) The benefits of staying active in old age: physical activity counteracts the negative influence of PICALM, BIN1, and CLU risk alleles on episodic memory functioning. Psychol Aging 29(2):440–449.  https://doi.org/10.1037/a0035465 CrossRefPubMedGoogle Scholar
  51. 51.
    Cohen RA, Grieve S, Hoth KF et al (2006) Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. Biol Psychiatry 59(10):975–982.  https://doi.org/10.1016/j.biopsych.2005.12.016 CrossRefPubMedGoogle Scholar
  52. 52.
    Wolkowitz OM, Epel ES, Reus VI et al (2010) Depression gets old fast: do stress and depression accelerate cell aging? Depress Anxiety 27(4):327–338.  https://doi.org/10.1002/da.20686 CrossRefPubMedGoogle Scholar
  53. 53.
    Savva GM, Wharton SB, Ince PG et al (2009) Age, neuropathology, and dementia. N Engl J Med 360(22):2302–2309.  https://doi.org/10.1056/NEJMoa0806142 CrossRefPubMedGoogle Scholar
  54. 54.
    Seidler A, Nienhaus A, Bernhardt T et al (2004) Psychosocial work factors and dementia. Occup Environ Med 61(12):962–971.  https://doi.org/10.1136/oem.2003.012153 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Fratiglioni L, Qiu C (2011) Prevention of cognitive decline in ageing: dementia as the target, delayed onset as the goal. Lancet Neurol 10(9):778–779.  https://doi.org/10.1016/S1474-4422(11)70145-4 CrossRefPubMedGoogle Scholar
  56. 56.
    McEwen BS, Morrison JH (2013) The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron 79(1):16–29.  https://doi.org/10.1016/j.neuron.2013.06.028 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wang HX, Karp A, Herlitz A et al (2009) Personality and lifestyle in relation to dementia incidence. Neurology 72(3):253–259.  https://doi.org/10.1212/01.wnl.0000339485.39246.87 CrossRefPubMedGoogle Scholar
  58. 58.
    Hahn EA, Wang HX, Andel R et al (2014) A change in sleep pattern may predict Alzheimer disease. Am J Geriatr Psychiatry 22(11):1262–1271.  https://doi.org/10.1016/j.jagp.2013.04.015 CrossRefPubMedGoogle Scholar
  59. 59.
    Barnes DE, Yaffe K (2011) The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 10(9):819–828.  https://doi.org/10.1016/S1474-4422(11)70072-2 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Skoog I, Lernfelt B, Landahl S et al (1996) 15-year longitudinal study of blood pressure and dementia. Lancet 347(9009):1141–1145CrossRefPubMedGoogle Scholar
  61. 61.
    Hanon O, Haulon S, Lenoir H et al (2005) Relationship between arterial stiffness and cognitive function in elderly subjects with complaints of memory loss. Stroke 36(10):2193–2197.  https://doi.org/10.1161/01.STR.0000181771.82518.1c CrossRefPubMedGoogle Scholar
  62. 62.
    Ott A, Stolk RP, van Harskamp F et al (1999) Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 53(9):1937–1942CrossRefPubMedGoogle Scholar
  63. 63.
    Anstey KJ, von Sanden C, Salim A et al (2007) Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol 166(4):367–378.  https://doi.org/10.1093/aje/kwm116 CrossRefPubMedGoogle Scholar
  64. 64.
    Anstey KJ, Lipnicki DM, Low LF (2008) Cholesterol as a risk factor for dementia and cognitive decline: a systematic review of prospective studies with meta-analysis. Am J Geriatr Psychiatry 16(5):343–354.  https://doi.org/10.1097/JGP.0b013e31816b72d4 CrossRefPubMedGoogle Scholar
  65. 65.
    de la Torre JC (2006) How do heart disease and stroke become risk factors for Alzheimer’s disease? Neurol Res 28(6):637–644.  https://doi.org/10.1179/016164106X130362 CrossRefPubMedGoogle Scholar
  66. 66.
    Newman AB, Fitzpatrick AL, Lopez O et al (2005) Dementia and Alzheimer’s disease incidence in relationship to cardiovascular disease in the Cardiovascular Health Study cohort. J Am Geriatr Soc 53(7):1101–1107.  https://doi.org/10.1111/j.1532-5415.2005.53360.x CrossRefPubMedGoogle Scholar
  67. 67.
    van Oijen M, de Jong FJ, Witteman JC et al (2007) Atherosclerosis and risk for dementia. Ann Neurol 61(5):403–410.  https://doi.org/10.1002/ana.21073 CrossRefPubMedGoogle Scholar
  68. 68.
    Wendell CR, Waldstein SR, Ferrucci L et al (2012) Carotid atherosclerosis and prospective risk of dementia. Stroke 43(12):3319–3324.  https://doi.org/10.1161/STROKEAHA.112.672527 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Radanovic M, Pereira FR, Stella F et al (2013) White matter abnormalities associated with Alzheimer’s disease and mild cognitive impairment: a critical review of MRI studies. Expert Rev Neurother 13(5):483–493.  https://doi.org/10.1586/ern.13.45 CrossRefPubMedGoogle Scholar
  70. 70.
    de Bruijn RF, Akoudad S, Cremers LG et al (2014) Determinants, MRI correlates, and prognosis of mild cognitive impairment: the Rotterdam study. J Alzheimers Dis 42(Suppl 3):S239–S249.  https://doi.org/10.3233/JAD-132558 CrossRefPubMedGoogle Scholar
  71. 71.
    Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365(9468):1415–1428.  https://doi.org/10.1016/S0140-6736(05)66378-7 CrossRefPubMedGoogle Scholar
  72. 72.
    Skoog I, Kalaria RN, Breteler MM (1999) Vascular factors and Alzheimer disease. Alzheimer Dis Assoc Disord 13(Suppl 3):S106–S114CrossRefPubMedGoogle Scholar
  73. 73.
    de Leeuw FE, Richard F, de Groot JC et al (2004) Interaction between hypertension, apoE, and cerebral white matter lesions. Stroke 35(5):1057–1060.  https://doi.org/10.1161/01.STR.0000125859.71051.83 CrossRefPubMedGoogle Scholar
  74. 74.
    Hollingworth P, Harold D, Sims R et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435.  https://doi.org/10.1038/ng.803 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Hovingh GK, Van Wijland MJ, Brownlie A et al (2003) The role of the ABCA1 transporter and cholesterol efflux in familial hypoalphalipoproteinemia. J Lipid Res 44(6):1251–1255.  https://doi.org/10.1194/jlr.M300080-JLR200 CrossRefPubMedGoogle Scholar
  76. 76.
    Imhof A, Kovari E, von Gunten A et al (2007) Morphological substrates of cognitive decline in nonagenarians and centenarians: a new paradigm? J Neurol Sci 257(1-2):72–79.  https://doi.org/10.1016/j.jns.2007.01.025 CrossRefPubMedGoogle Scholar
  77. 77.
    Serrano-Pozo A, Frosch MP, Masliah E et al (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189.  https://doi.org/10.1101/cshperspect.a006189 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11(2):111–128PubMedPubMedCentralGoogle Scholar
  79. 79.
    Matthews FE, Arthur A, Barnes LE et al (2013) A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of England: results of the Cognitive Function and Ageing Study I and II. Lancet 382(9902):1405–1412.  https://doi.org/10.1016/S0140-6736(13)61570-6 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Qiu C, von Strauss E, Backman L et al (2013) Twenty-year changes in dementia occurrence suggest decreasing incidence in central Stockholm, Sweden. Neurology 80(20):1888–1894.  https://doi.org/10.1212/WNL.0b013e318292a2f9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of Psychiatry and PsychotherapyLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.German Center for Neurodegenerative Diseases (DZNE) MunichMunichGermany
  3. 3.Neuroepidemiology and Ageing Research Unit, School of Public HealthThe Imperial College of Science, Technology and MedicineLondonUK
  4. 4.West London Mental Health NHS TrustLondonUK

Personalised recommendations