Advertisement

Quantification of Tau Load in Alzheimer’s Disease Clinical Trials Using Positron Emission Tomography

  • Tessa Timmers
  • Bart N. M. van Berckel
  • Adriaan A. Lammertsma
  • Rik Ossenkoppele
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1750)

Abstract

Alzheimer’s disease is a neurodegenerative condition that is neuropathologically characterized by the presence of amyloid-β plaques and neurofibrillary tangles consisting of tau. Recently, several positron emission tomography (PET) tracers have been developed that yielded promising initial results. In this chapter, we discuss how tau PET can be used in the context in clinical trials. We argue that simplified reference tissue models based on dynamic data acquisition are most suitable for accurately measuring changes in tau pathology in trials tailored to reduce cerebral tau load. Therefore, we discuss the importance of tracer kinetic modeling and describe in detail how a reliable measurement of specific binding can be obtained.

Key words

Tau Positron emission tomography (PET) Alzheimer’s disease (AD) AV1451 Clinical trial 

References

  1. 1.
    Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, Shankle WR, Elizarov A, Kolb HC (2013) Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 34(2):457–468.  https://doi.org/10.3233/JAD-122059 CrossRefPubMedGoogle Scholar
  2. 2.
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55(3):306–319.  https://doi.org/10.1002/ana.20009 CrossRefPubMedGoogle Scholar
  3. 3.
    Beharry C, Cohen LS, Di J, Ibrahim K, Briffa-Mirabella S, Alonso Adel C (2014) Tau-induced neurodegeneration: mechanisms and targets. Neurosci Bull 30(2):346–358.  https://doi.org/10.1007/s12264-013-1414-z CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41(1):17–24.  https://doi.org/10.1002/ana.410410106 CrossRefPubMedGoogle Scholar
  5. 5.
    Spires-Jones TL, Hyman BT (2014) The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82(4):756–771.  https://doi.org/10.1016/j.neuron.2014.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639CrossRefGoogle Scholar
  7. 7.
    Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Del Tredici K, Duyckaerts C, Frosch MP, Haroutunian V, Hof PR, Hulette CM, Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kovari E, Kukull WA, Leverenz JB, Love S, Mackenzie IR, Mann DM, Masliah E, McKee AC, Montine TJ, Morris JC, Schneider JA, Sonnen JA, Thal DR, Trojanowski JQ, Troncoso JC, Wisniewski T, Woltjer RL, Beach TG (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71(5):362–381.  https://doi.org/10.1097/NEN.0b013e31825018f7 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rolstad S, Berg AI, Bjerke M, Johansson B, Zetterberg H, Wallin A (2013) Cerebrospinal fluid biomarkers mirror rate of cognitive decline. J Alzheimers Dis 34(4):949–956.  https://doi.org/10.3233/JAD-121960 CrossRefPubMedGoogle Scholar
  9. 9.
    Marquie M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG, Klunk WE, Mathis CA, Ikonomovic MD, Debnath ML, Vasdev N, Dickerson BC, Gomperts SN, Growdon JH, Johnson KA, Frosch MP, Hyman BT, Gomez-Isla T (2015) Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol 78(5):787–800.  https://doi.org/10.1002/ana.24517 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D, Lam C, Liang Q, Liu C, Mocharla VP, Mu F, Sinha A, Su H, Szardenings AK, Walsh JC, Wang E, Yu C, Zhang W, Zhao T, Kolb HC (2013) [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 9(6):666–676.  https://doi.org/10.1016/j.jalz.2012.11.008 CrossRefPubMedGoogle Scholar
  11. 11.
    Lowe VJ, Curran G, Fang P, Liesinger AM, Josephs KA, Parisi JE, Kantarci K, Boeve BF, Pandey MK, Bruinsma T, Knopman DS, Jones DT, Petrucelli L, Cook CN, Graff-Radford NR, Dickson DW, Petersen RC, Jack CR Jr, Murray ME (2016) An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol Commun 4(1):58.  https://doi.org/10.1186/s40478-016-0315-6 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Marquie M, Siao Tick Chong M, Anton-Fernandez A, Verwer EE, Saez-Calveras N, Meltzer AC, Ramanan P, Amaral AC, Gonzalez J, Normandin MD, Frosch MP, Gomez-Isla T (2017) [F-18]-AV-1451 binding correlates with postmortem neurofibrillary tangle Braak staging. Acta Neuropathol 134:619.  https://doi.org/10.1007/s00401-017-1740-8 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Scholl M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, Baker SL, Vogel JW, Faria J, Schwimmer HD, Rabinovici GD, Jagust WJ (2016) PET imaging of tau deposition in the aging human brain. Neuron 89(5):971–982.  https://doi.org/10.1016/j.neuron.2016.01.028 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schwarz AJ, Yu P, Miller BB, Shcherbinin S, Dickson J, Navitsky M, Joshi AD, Devous MD Sr, Mintun MS (2016) Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 139(Pt 5):1539–1550.  https://doi.org/10.1093/brain/aww023 CrossRefPubMedGoogle Scholar
  15. 15.
    Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, Mormino E, Chhatwal J, Amariglio R, Papp K, Marshall G, Albers M, Mauro S, Pepin L, Alverio J, Judge K, Philiossaint M, Shoup T, Yokell D, Dickerson B, Gomez-Isla T, Hyman B, Vasdev N, Sperling R (2016) Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 79(1):110–119.  https://doi.org/10.1002/ana.24546 CrossRefPubMedGoogle Scholar
  16. 16.
    Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM, Lee HS, Lee JH, Ryu YH, Lee MS, Lyoo CH (2016) In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann Neurol 80(2):247–258.  https://doi.org/10.1002/ana.24711 CrossRefPubMedGoogle Scholar
  17. 17.
    Ossenkoppele R, Schonhaut DR, Baker SL, O'Neil JP, Janabi M, Ghosh PM, Santos M, Miller ZA, Bettcher BM, Gorno-Tempini ML, Miller BL, Jagust WJ, Rabinovici GD (2015) Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy. Ann Neurol 77(2):338–342.  https://doi.org/10.1002/ana.24321 CrossRefPubMedGoogle Scholar
  18. 18.
    Ossenkoppele R, Schonhaut DR, Scholl M, Lockhart SN, Ayakta N, Baker SL, O’Neil JP, Janabi M, Lazaris A, Cantwell A, Vogel J, Santos M, Miller ZA, Bettcher BM, Vossel KA, Kramer JH, Gorno-Tempini ML, Miller BL, Jagust WJ, Rabinovici GD (2016) Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139(Pt 5):1551–1567.  https://doi.org/10.1093/brain/aww027 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sepulcre J, Schultz AP, Sabuncu M, Gomez-Isla T, Chhatwal J, Becker A, Sperling R, Johnson KA (2016) In vivo tau, amyloid, and gray matter profiles in the aging brain. J Neurosci 36(28):7364–7374.  https://doi.org/10.1523/JNEUROSCI.0639-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zwan MD, Ossenkoppele R, Tolboom N, Beunders AJ, Kloet RW, Adriaanse SM, Boellaard R, Windhorst AD, Raijmakers P, Adams H, Lammertsma AA, Scheltens P, van der Flier WM, van Berckel BN (2014) Comparison of simplified parametric methods for visual interpretation of 11C-Pittsburgh compound-B PET images. J Nucl Med 55(8):1305–1307.  https://doi.org/10.2967/jnumed.114.139121 CrossRefPubMedGoogle Scholar
  21. 21.
    Lammertsma AA (2017) Forward to the past: the case for quantitative PET imaging. J Nucl Med 58:1019.  https://doi.org/10.2967/jnumed.116.188029 CrossRefPubMedGoogle Scholar
  22. 22.
    van Berckel BN, Ossenkoppele R, Tolboom N, Yaqub M, Foster-Dingley JC, Windhorst AD, Scheltens P, Lammertsma AA, Boellaard R (2013) Longitudinal amyloid imaging using 11C-PiB: methodologic considerations. J Nucl Med 54(9):1570–1576.  https://doi.org/10.2967/jnumed.112.113654 CrossRefPubMedGoogle Scholar
  23. 23.
    Golla SS, Timmers T, Ossenkoppele R, Groot C, Verfaillie S, Scheltens P, van der Flier WM, Schwarte L, Mintun MA, Devous M, Schuit RC, Windhorst AD, Lammertsma AA, Boellaard R, van Berckel BN, Yaqub M (2017) Quantification of tau load using [18F]AV1451 PET. Mol Imaging Biol 19:963.  https://doi.org/10.1007/s11307-017-1080-z CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cizek J, Herholz K, Vollmar S, Schrader R, Klein J, Heiss WD (2004) Fast and robust registration of PET and MR images of human brain. Neuroimage 22(1):434–442.  https://doi.org/10.1016/j.neuroimage.2004.01.016 CrossRefPubMedGoogle Scholar
  25. 25.
    Mourik JE, Lubberink M, van Velden FH, Lammertsma AA, Boellaard R (2009) Off-line motion correction methods for multi-frame PET data. Eur J Nucl Med Mol Imaging 36(12):2002–2013.  https://doi.org/10.1007/s00259-009-1193-y CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, Mitchell TN, Brooks DJ, Duncan JS (2003) Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 19(4):224–247.  https://doi.org/10.1002/hbm.10123 CrossRefPubMedGoogle Scholar
  27. 27.
    Ossenkoppele R, Prins ND, van Berckel BN (2013) Amyloid imaging in clinical trials. Alzheimers Res Ther 5(4):36.  https://doi.org/10.1186/alzrt195 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16(5):834–840.  https://doi.org/10.1097/00004647-199609000-00008 CrossRefPubMedGoogle Scholar
  29. 29.
    Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6(4):279–287.  https://doi.org/10.1006/nimg.1997.0303 CrossRefPubMedGoogle Scholar
  30. 30.
    Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4(3 Pt 1):153–158.  https://doi.org/10.1006/nimg.1996.0066 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Tessa Timmers
    • 1
    • 2
  • Bart N. M. van Berckel
    • 2
  • Adriaan A. Lammertsma
    • 2
  • Rik Ossenkoppele
    • 1
    • 2
  1. 1.Department of Neurology and Alzheimer Center, Neuroscience Campus AmsterdamVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Department of Radiology and Nuclear Medicine, Neuroscience Campus AmsterdamVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations