Advertisement

The Use of 18F-FDG PET in the Diagnostic Workup of Alzheimer’s Dementia

  • Marion M. Ortner
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1750)

Abstract

The diagnosis of dementia probably due to Alzheimer’s disease is still primarily a clinical one. In cases that remain clinically unclear, however, biomarkers for amyloid deposition and neuronal injury can help to identify the underlying cause. One biomarker even for early neuronal injury in the stage of mild cognitive impairment is cerebral glucose hypometabolism measured by 18F-FDG PET. Distinct patterns of hypometabolism can be seen, for example, in dementia due to Alzheimer’s disease, frontotemporal lobar degeneration, and dementia with Lewy bodies. This makes it possible to distinguish between different neurodegenerative diseases as well as major depressive disorder. While the sensitivity of 18F-FDG PET to detect Alzheimer’s disease is high, specificity is low and the additional use of biomarkers for amyloid deposition might be beneficial in some cases. In conclusion, 18F-FDG PET is a useful tool when the cause for dementia remains unclear and different diagnosis would lead to different treatment approaches. Due to the lack of treatment options in pre-dementia stages, the use of 18F-FDG PET is currently not recommended for these cases in a purely clinical setting.

Key words

Alzheimer’s disease Mild cognitive impairment (MCI) Alzheimer’s disease dementia Biomarker 18F-FDG PET 

References

  1. 1.
    Ferri CP, Prince M, Brayne C et al (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366(9503):2112–2117.  https://doi.org/10.1016/S0140-6736(05)67889-0 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259CrossRefGoogle Scholar
  3. 3.
    Thal DR, Rub U, Orantes M et al (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800CrossRefGoogle Scholar
  4. 4.
    McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269.  https://doi.org/10.1016/j.jalz.2011.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kawasaki K, Ishii K, Saito Y et al (2008) Influence of mild hyperglycemia on cerebral FDG distribution patterns calculated by statistical parametric mapping. Ann Nucl Med 22(3):191–200.  https://doi.org/10.1007/s12149-007-0099-7 CrossRefPubMedGoogle Scholar
  6. 6.
    Kuhl DE, Metter EJ, Riege WH et al (1982) Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab 2(2):163–171.  https://doi.org/10.1038/jcbfm.1982.15 CrossRefPubMedGoogle Scholar
  7. 7.
    Kalpouzos G, Chetelat G, Baron JC et al (2009) Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol Aging 30(1):112–124.  https://doi.org/10.1016/j.neurobiolaging.2007.05.019 CrossRefPubMedGoogle Scholar
  8. 8.
    Soucy JP, Bartha R, Bocti C et al (2013) Clinical applications of neuroimaging in patients with Alzheimer’s disease: a review from the fourth Canadian consensus conference on the diagnosis and treatment of dementia 2012. Alzheimers Res Ther 5(Suppl 1):S3.  https://doi.org/10.1186/alzrt199 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    S3 Leitlinie “Demenz” (2015)Google Scholar
  10. 10.
    Foster NL, Heidebrink JL, Clark CM et al (2007) FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 130(Pt 10):2616–2635.  https://doi.org/10.1093/brain/awm177 CrossRefPubMedGoogle Scholar
  11. 11.
    Mosconi L, Tsui WH, Herholz K et al (2008) Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med 49(3):390–398.  https://doi.org/10.2967/jnumed.107.045385 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Diehl-Schmid J, Grimmer T, Drzezga A et al (2007) Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging 28(1):42–50.  https://doi.org/10.1016/j.neurobiolaging.2005.11.002 CrossRefPubMedGoogle Scholar
  13. 13.
    Minoshima S, Foster NL, Sima AA et al (2001) Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol 50(3):358–365CrossRefGoogle Scholar
  14. 14.
    Rabinovici GD, Jagust WJ, Furst AJ et al (2008) Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol 64(4):388–401.  https://doi.org/10.1002/ana.21451 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mesulam M, Wicklund A, Johnson N et al (2008) Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Ann Neurol 63(6):709–719.  https://doi.org/10.1002/ana.21388 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Laforce R Jr, Tosun D, Ghosh P et al (2014) Parallel ICA of FDG-PET and PiB-PET in three conditions with underlying Alzheimer’s pathology. Neuroimage Clin 4:508–516.  https://doi.org/10.1016/j.nicl.2014.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Renner JA, Burns JM, Hou CE et al (2004) Progressive posterior cortical dysfunction: a clinicopathologic series. Neurology 63(7):1175–1180CrossRefGoogle Scholar
  18. 18.
    Alladi S, Xuereb J, Bak T et al (2007) Focal cortical presentations of Alzheimer’s disease. Brain 130(Pt 10):2636–2645.  https://doi.org/10.1093/brain/awm213 CrossRefPubMedGoogle Scholar
  19. 19.
    Knibb JA, Xuereb JH, Patterson K et al (2006) Clinical and pathological characterization of progressive aphasia. Ann Neurol 59(1):156–165.  https://doi.org/10.1002/ana.20700 CrossRefPubMedGoogle Scholar
  20. 20.
    Su L, Cai Y, Xu Y et al (2014) Cerebral metabolism in major depressive disorder: a voxel-based meta-analysis of positron emission tomography studies. BMC Psychiatry 14:321.  https://doi.org/10.1186/s12888-014-0321-9 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Drzezga A, Lautenschlager N, Siebner H et al (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30(8):1104–1113.  https://doi.org/10.1007/s00259-003-1194-1 CrossRefPubMedGoogle Scholar
  22. 22.
    Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279.  https://doi.org/10.1016/j.jalz.2011.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Smailagic N, Vacante M, Hyde C et al (2015) (1)(8)F-FDG PET for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 1:CD010632.  https://doi.org/10.1002/14651858.CD010632.pub2 CrossRefPubMedGoogle Scholar
  24. 24.
    Silverman DH, Small GW, Chang CY et al (2001) Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 286(17):2120–2127CrossRefGoogle Scholar
  25. 25.
    Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292.  https://doi.org/10.1016/j.jalz.2011.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mosconi L, McHugh PF (2011) FDG- and amyloid-PET in Alzheimer’s disease: is the whole greater than the sum of the parts? Q J Nucl Med Mol Imaging 55(3):250–264PubMedPubMedCentralGoogle Scholar
  27. 27.
    Alexopoulos P, Kriett L, Haller B et al (2014) Limited agreement between biomarkers of neuronal injury at different stages of Alzheimer’s disease. Alzheimers Dement 10(6):684–689.  https://doi.org/10.1016/j.jalz.2014.03.006 CrossRefPubMedGoogle Scholar
  28. 28.
    Zwan MD, Rinne JO, Hasselbalch SG et al (2016) Use of amyloid-PET to determine cutpoints for CSF markers: a multicenter study. Neurology 86(1):50–58.  https://doi.org/10.1212/WNL.0000000000002081 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Federal Ministry for the Environment NC, Building and Nuclear Safety (2014) Umweltradioaktivität und Strahlenbelastung Jahresbericht 2014. http://www.bmub.bund.de/themen/atomenergie-strahlenschutz/strahlenschutz/atomenergie-strahlenschutz-download/artikel/umweltradioaktivitaet-und-strahlenbelastung-jahresbericht-2014-gesamtbericht/?tx_ttnews%5BbackPid%5D=347. Accessed 11 March 2017
  30. 30.
    England PH (2011) Guidance—ionising radiation: dose comparisons. https://www.gov.uk/government/publications/ionising-radiation-dose-comparisons/ionising-radiation-dose-comparisons. Accessed 22 Apr 2017
  31. 31.
    Mosconi L, Tsui WH, Pupi A et al (2007) (18)F-FDG PET database of longitudinally confirmed healthy elderly individuals improves detection of mild cognitive impairment and Alzheimer’s disease. J Nucl Med 48(7):1129–1134.  https://doi.org/10.2967/jnumed.107.040675 CrossRefPubMedGoogle Scholar
  32. 32.
    Chen WP, Samuraki M, Yanase D et al (2008) Effect of sample size for normal database on diagnostic performance of brain FDG PET for the detection of Alzheimer’s disease using automated image analysis. Nucl Med Commun 29(3):270–276.  https://doi.org/10.1097/MNM.0b013e3282f3fa76 CrossRefPubMedGoogle Scholar
  33. 33.
    Patwardhan MB, McCrory DC, Matchar DB et al (2004) Alzheimer disease: operating characteristics of PET—a meta-analysis. Radiology 231(1):73–80.  https://doi.org/10.1148/radiol.2311021620 CrossRefPubMedGoogle Scholar
  34. 34.
    Bohnen NI, Djang DS, Herholz K et al (2012) Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med 53(1):59–71.  https://doi.org/10.2967/jnumed.111.096578 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of Psychiatry and PsychotherapyKlinikum rechts der Isar, Technische Universität MünchenMunichGermany

Personalised recommendations