Skip to main content

Using the Zebrafish Embryo to Dissect the Early Steps of the Metastasis Cascade

Part of the Methods in Molecular Biology book series (MIMB,volume 1749)

Abstract

Most cancers end up with the death of patients caused by the formation of secondary tumors, called metastases. However, how these secondary tumors appear and develop is only poorly understood. A fine understanding of the multiple steps of the metastasis cascade requires in vivo models allowing high spatiotemporal analysis of the behavior of metastatic cells. Zebrafish embryos combine several advantages such as transparency, small size, stereotyped anatomy, and easy handling, making it a very powerful model for cell and cancer biology, and in vivo imaging analysis. In the following chapter, we describe a complete procedure allowing in vivo imaging methods, at high throughput and spatiotemporal resolution, to assess the behavior of circulating tumor cells (CTCs) in an experimental metastasis assay. This protocol provides access, for the first time, to the earliest steps of tumor cell seeding during metastasis formation.

Key words

  • Zebrafish
  • Circulating tumor cells (CTCs)
  • Metastasis
  • Injection
  • Live imaging

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7701-7_15
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7701-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Massagué J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529:298–306

    CrossRef  PubMed  PubMed Central  Google Scholar 

  2. Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC (2016) In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol 4:12

    CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ (2013) Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155:1639–1651

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Karreman MA, Hyenne V, Schwab Y, Goetz JG (2016) Intravital correlative microscopy: imaging life at the nanoscale. Trends Cell Biol 26:848–863

    CrossRef  PubMed  Google Scholar 

  5. Kienast Y et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122

    CAS  CrossRef  PubMed  Google Scholar 

  6. Cheung KJ et al (2016) Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A 113:E854–E863

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Cheon D-J, Orsulic S (2011) Mouse models of cancer. Annu Rev Pathol 6:95–119

    CAS  CrossRef  PubMed  Google Scholar 

  8. Deryugina EI, Kiosses WB (2017) Intratumoral cancer cell intravasation can occur independent of invasion into the adjacent stroma. Cell Rep 19:601–616

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Leong HS et al (2014) Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep 8:1558–1570

    CAS  CrossRef  PubMed  Google Scholar 

  10. Amatruda JF, Shepard JL, Stern HM, Zon LI (2002) Zebrafish as a cancer model system. Cancer Cell 1:229–231

    CAS  CrossRef  PubMed  Google Scholar 

  11. Stoletov K, Klemke R (2008) Catch of the day: zebrafish as a human cancer model. Oncogene 27:4509–4520

    CAS  CrossRef  PubMed  Google Scholar 

  12. Stoletov K, Montel V, Lester RD, Gonias SL, Klemke R (2007) High-resolution imaging of the dynamic tumor cell–vascular interface in transparent zebrafish. Proc Natl Acad Sci U S A 104:17406–17411

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Stoletov K et al (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123:2332–2341

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. White RM et al (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2:183–189

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Heilmann S et al (2015) A quantitative system for studying metastasis using transparent zebrafish. Cancer Res 75:4272–4282

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Kaufman CK et al (2016) A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science 351:aad2197

    CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Tang Q et al (2016) Imaging tumour cell heterogeneity following cell transplantation into optically clear immune-deficient zebrafish. Nat Commun 7:10358

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Kim IS et al (2017) Microenvironment-derived factors driving metastatic plasticity in melanoma. Nat Commun 8:14343

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Corey DR, Abrams JM (2001) Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol 2:reviews1015

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Huang H, Zhang B, Lin S (2016) TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish. Methods Cell Biol 135:107–120

    CAS  CrossRef  PubMed  Google Scholar 

  21. De Santis F, Di Donato V, Del Bene F (2016) Clonal analysis of gene loss of function and tissue-specific gene deletion in zebrafish via CRISPR/Cas9 technology. Methods Cell Biol 135:171–188

    CrossRef  PubMed  Google Scholar 

  22. Ablain J, Zon LI (2016) Tissue-specific gene targeting using CRISPR/Cas9. Methods Cell Biol 135:189–202

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318

    CAS  CrossRef  PubMed  Google Scholar 

  24. Follain G, Osmani N, Azevedo S, Allio G, Mercier L, Karreman MA, Solecki G, Garcia-Leon MJ, Lefebvre O, Fekonja N, Hille C, Chabannes V, Dollé G, Metivet T, Der Hovsepian F, Prudhomme C, Ruthensteiner B, Kemmling A, Siemonsen S, Schneider T, Fiehler J, Glatzel M, Winkler F, Schwab Y, Pantel K, Harlepp S, Goetz JG (2017) Hemodynamic forces tune the arrest, adhesion and extravasation of circulating tumor cells. Dev Cell. https://doi.org/10.1101/183046

  25. Goetz JG et al (2014) Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep 6:799–808

    CAS  CrossRef  PubMed  Google Scholar 

  26. Goetz JG, Monduc F, Schwab Y, Vermot J (2015) Using correlative light and electron microscopy to study zebrafish vascular morphogenesis. Methods Mol Biol 1189:31–46

    CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all members of the Goetz Lab for helpful discussions throughout the development of this technology. We are grateful to Sofia AZEVEDO and Nina FEKONJA for their help in various aspects of this method. We are very much grateful to Francesca PERI (EMBL) and Kerstin RICHTER (EMBL) for providing zebrafish embryos. This work has been funded by Plan Cancer (OptoMetaTrap, to J.G. and S.H) and CNRS IMAG’IN (to S.H., J.G., and C.P.) and by institutional funds from INSERM and University of Strasbourg. G.F. is supported by La Ligue Contre le Cancer. N.O is supported by Plan Cancer. G.A. was supported by FRM (Fondation pour la Recherche Médicale).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacky G. Goetz .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Follain, G., Osmani, N., Fuchs, C., Allio, G., Harlepp, S., Goetz, J.G. (2018). Using the Zebrafish Embryo to Dissect the Early Steps of the Metastasis Cascade. In: Gautreau, A. (eds) Cell Migration. Methods in Molecular Biology, vol 1749. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7701-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7701-7_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7700-0

  • Online ISBN: 978-1-4939-7701-7

  • eBook Packages: Springer Protocols