Advertisement

Sertoli Cells pp 203-228 | Cite as

Testicular Cell Selective Ablation Using Diphtheria Toxin Receptor Transgenic Mice

  • Diane Rebourcet
  • Annalucia Darbey
  • Michael Curley
  • Peter O’Shaughnessy
  • Lee B. SmithEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1748)

Abstract

Testis development and function is regulated by intricate cell-cell cross talk. Characterization of the mechanisms underpinning this has been derived through a wide variety of approaches including pharmacological manipulation, transgenics, and cell-specific ablation of populations. The removal of all or a proportion of a specific cell type has been achieved through a variety of approaches. In this paper, we detail a combined transgenic and pharmacological approach to ablate the Sertoli or germ cell populations using diphtheria toxin in mice. We describe the key steps in generation, validation, and use of the models and also describe the caveats and cautions necessary. We also provide a detailed description of the methodology applied to characterize testis development and function in models of postnatal Sertoli or germ cell ablation.

Keywords

Cre/lox Transgenic Diphtheria Sertoli cells Testis Mouse 

Notes

Acknowledgments

We thank Lyndsey Cruickshanks, Nathan Jeffery, Sarah Smith, Laura Milne, Laura O’Hara, Yi Ting Tsai, Rod Mitchell, Mike Millar, Forbes Howie, Mike Dodds, and Ana Monteiro for technical support. The work described in this article was funded by a Biotechnology and Biological Sciences Research Council (BBSRC) Project Grant [BB/J015105/1 to L.B.S., P.O’S.] and a Medical Research Council (MRC) Programme Grant [MR/N002970/1 to L.B.S.].

References

  1. 1.
    Allan CM, Haywood M, Swaraj S, Spaliviero J, Koch A, Jimenez M, Poutanen M, Levallet J, Huhtaniemi I, Illingworth P, Handelsman DJ (2001) A novel transgenic model to characterize the specific effects of follicle-stimulating hormone on gonadal physiology in the absence of luteinizing hormone actions. Endocrinology 142(6):2213–2220. https://doi.org/10.1210/endo.142.6.8092 CrossRefPubMedGoogle Scholar
  2. 2.
    Smith L (2011) Good planning and serendipity: exploiting the Cre/Lox system in the testis. Reproduction 141(2):151–161. https://doi.org/10.1530/REP-10-0404 CrossRefPubMedGoogle Scholar
  3. 3.
    Yoshida S (2010) Stem cells in mammalian spermatogenesis. Dev Growth Differ 52(3):311–317. https://doi.org/10.1111/j.1440-169X.2010.01174.x CrossRefPubMedGoogle Scholar
  4. 4.
    Brinster RL (2002) Germline stem cell transplantation and transgenesis. Science 296(5576):2174–2176. https://doi.org/10.1126/science.1071607 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Smith LB, O'Shaughnessy PJ, Rebourcet D (2015) Cell-specific ablation in the testis: what have we learned? Andrology 3(6):1035–1049. https://doi.org/10.1111/andr.12107 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Stanley E, Lin CY, Jin S, Liu J, Sottas CM, Ge R, Zirkin BR, Chen H (2012) Identification, proliferation, and differentiation of adult Leydig stem cells. Endocrinology 153(10):5002–5010. https://doi.org/10.1210/en.2012-1417 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sharpe RM, Maddocks S, Kerr JB (1990) Cell-cell interactions in the control of spermatogenesis as studied using Leydig cell destruction and testosterone replacement. Am J Anat 188(1):3–20. https://doi.org/10.1002/aja.1001880103 CrossRefPubMedGoogle Scholar
  8. 8.
    Gaytan F, Bellido C, Morales C, Garcia M, van Rooijen N, Aguilar E (1996) In vivo manipulation (depletion versus activation) of testicular macrophages: central and local effects. J Endocrinol 150(1):57–65CrossRefPubMedGoogle Scholar
  9. 9.
    Bergh A, Damber JE, van Rooijen N (1993) Liposome-mediated macrophage depletion: an experimental approach to study the role of testicular macrophages in the rat. J Endocrinol 136(3):407–413CrossRefPubMedGoogle Scholar
  10. 10.
    O'Shaughnessy PJ, Hu L, Baker PJ (2008) Effect of germ cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells. Reproduction 135(6):839–850. https://doi.org/10.1530/REP-08-0012 CrossRefPubMedGoogle Scholar
  11. 11.
    Moolten FL, Cooperband SR (1970) Selective destruction of target cells by diphtheria toxin conjugated to antibody directed against antigens on the cells. Science 169(3940):68–70CrossRefPubMedGoogle Scholar
  12. 12.
    Brockschnieder D, Lappe-Siefke C, Goebbels S, Boesl MR, Nave KA, Riethmacher D (2004) Cell depletion due to diphtheria toxin fragment A after Cre-mediated recombination. Mol Cell Biol 24(17):7636–7642. https://doi.org/10.1128/MCB.24.17.7636-7642.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cha JH, Chang MY, Richardson JA, Eidels L (2003) Transgenic mice expressing the diphtheria toxin receptor are sensitive to the toxin. Mol Microbiol 49(1):235–240CrossRefPubMedGoogle Scholar
  14. 14.
    Buch T, Heppner FL, Tertilt C, Heinen TJ, Kremer M, Wunderlich FT, Jung S, Waisman A (2005) A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods 2(6):419–426. https://doi.org/10.1038/nmeth762 CrossRefPubMedGoogle Scholar
  15. 15.
    Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M, Inui Y, Mekada E, Kimata Y, Tsuru A, Kohno K (2001) Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat Biotechnol 19(8):746–750. https://doi.org/10.1038/90795 CrossRefPubMedGoogle Scholar
  16. 16.
    Rebourcet D, O'Shaughnessy PJ, Monteiro A, Milne L, Cruickshanks L, Jeffrey N, Guillou F, Freeman TC, Mitchell RT, Smith LB (2014) Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis. PLoS One 9(8):e105687. https://doi.org/10.1371/journal.pone.0105687 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rebourcet D, O’Shaughnessy PJ, Pitetti JL, Monteiro A, O’Hara L, Milne L, Tsai YT, Cruickshanks L, Riethmacher D, Guillou F, Mitchell RT, van't Hof R, Freeman TC, Nef S, Smith LB (2014) Sertoli cells control peritubular myoid cell fate and support adult Leydig cell development in the prepubertal testis. Development 141(10):2139–2149. https://doi.org/10.1242/dev.107029
  18. 18.
    Lecureuil C, Fontaine I, Crepieux P, Guillou F (2002) Sertoli and granulosa cell-specific Cre recombinase activity in transgenic mice. Genesis 33(3):114–118. https://doi.org/10.1002/gene.10100 CrossRefPubMedGoogle Scholar
  19. 19.
    Sadate-Ngatchou PI, Payne CJ, Dearth AT, Braun RE (2008) Cre recombinase activity specific to postnatal, premeiotic male germ cells in transgenic mice. Genesis 46(12):738–742. https://doi.org/10.1002/dvg.20437 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140. https://doi.org/10.1038/nn.2467 CrossRefPubMedGoogle Scholar
  22. 22.
    Rebourcet D, Wu J, Cruickshanks L, Smith SE, Milne L, Fernando A, Wallace RJ, Gray CD, Hadoke PW, Mitchell RT, O'Shaughnessy PJ, Smith LB (2016) Sertoli cells modulate testicular vascular network development, structure, and function to influence circulating testosterone concentrations in adult male mice. Endocrinology 157(6):2479–2488. https://doi.org/10.1210/en.2016-1156 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cool J, DeFalco T, Capel B (2012) Testis formation in the fetal mouse: dynamic and complex de novo tubulogenesis. Wiley Interdiscip Rev Dev Biol 1(6):847–859. https://doi.org/10.1002/wdev.62 CrossRefPubMedGoogle Scholar
  24. 24.
    Sekido R, Lovell-Badge R (2013) Genetic control of testis development. Sex Dev 7(1–3):21–32. https://doi.org/10.1159/000342221 CrossRefPubMedGoogle Scholar
  25. 25.
    Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc 2008:prot4986. https://doi.org/10.1101/pdb.prot4986 Google Scholar
  26. 26.
    O'Shaughnessy PJ, Monteiro A, Abel M (2012) Testicular development in mice lacking receptors for follicle stimulating hormone and androgen. PLoS One 7(4):e35136. https://doi.org/10.1371/journal.pone.0035136 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Russell LD, Ren HP, Sinha Hikim I, Schulze W, Sinha Hikim AP (1990) A comparative study in twelve mammalian species of volume densities, volumes, and numerical densities of selected testis components, emphasizing those related to the Sertoli cell. Am J Anat 188(1):21–30. https://doi.org/10.1002/aja.1001880104 CrossRefPubMedGoogle Scholar
  28. 28.
    O'Shaughnessy PJ, Baker PJ, Heikkila M, Vainio S, McMahon AP (2000) Localization of 17beta-hydroxysteroid dehydrogenase/17-ketosteroid reductase isoform expression in the developing mouse testis--androstenedione is the major androgen secreted by fetal/neonatal leydig cells. Endocrinology 141(7):2631–2637. https://doi.org/10.1210/endo.141.7.7545 CrossRefPubMedGoogle Scholar
  29. 29.
    Shima Y, Miyabayashi K, Haraguchi S, Arakawa T, Otake H, Baba T, Matsuzaki S, Shishido Y, Akiyama H, Tachibana T, Tsutsui K, Morohashi K (2013) Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Mol Endocrinol 27(1):63–73. https://doi.org/10.1210/me.2012-1256 CrossRefPubMedGoogle Scholar
  30. 30.
    Sharpe RM, McKinnell C, Kivlin C, Fisher JS (2003) Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125(6):769–784CrossRefPubMedGoogle Scholar
  31. 31.
    Auharek SA, Lara NL, Avelar GF, Sharpe RM, Franca LR (2012) Effects of inducible nitric oxide synthase (iNOS) deficiency in mice on Sertoli cell proliferation and perinatal testis development. Int J Androl 35(5):741–751. https://doi.org/10.1111/j.1365-2605.2012.01264.x CrossRefPubMedGoogle Scholar
  32. 32.
    Baker PJ, O'Shaughnessy PJ (2001) Expression of prostaglandin D synthetase during development in the mouse testis. Reproduction 122(4):553–559CrossRefPubMedGoogle Scholar
  33. 33.
    Vergouwen RP, Jacobs SG, Huiskamp R, Davids JA, de Rooij DG (1991) Proliferative activity of gonocytes, Sertoli cells and interstitial cells during testicular development in mice. J Reprod Fertil 93(1):233–243CrossRefPubMedGoogle Scholar
  34. 34.
    O'Shaughnessy PJ (2014) Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol 29:55–65. https://doi.org/10.1016/j.semcdb.2014.02.010 CrossRefPubMedGoogle Scholar
  35. 35.
    Mendis-Handagama SM, Ariyaratne HB (2001) Differentiation of the adult Leydig cell population in the postnatal testis. Biol Reprod 65(3):660–671CrossRefPubMedGoogle Scholar
  36. 36.
    Haider SG (2004) Cell biology of Leydig cells in the testis. Int Rev Cytol 233:181–241. https://doi.org/10.1016/S0074-7696(04)33005-6 CrossRefPubMedGoogle Scholar
  37. 37.
    Saez JM (1994) Leydig cells: endocrine, paracrine, and autocrine regulation. Endocr Rev 15(5):574–626. https://doi.org/10.1210/edrv-15-5-574 CrossRefPubMedGoogle Scholar
  38. 38.
    Regueira M, Artagaveytia SL, Galardo MN, Pellizzari EH, Cigorraga SB, Meroni SB, Riera MF (2015) Novel molecular mechanisms involved in hormonal regulation of lactate production in Sertoli cells. Reproduction 150(4):311–321. https://doi.org/10.1530/REP-15-0093 CrossRefPubMedGoogle Scholar
  39. 39.
    Walker WH, Cheng J (2005) FSH and testosterone signaling in Sertoli cells. Reproduction 130(1):15–28CrossRefPubMedGoogle Scholar
  40. 40.
    O'Shaughnessy PJ, Monteiro A, Verhoeven G, De Gendt K, Abel MH (2010) Effect of FSH on testicular morphology and spermatogenesis in gonadotrophin-deficient hypogonadal mice lacking androgen receptors. Reproduction 139(1):177–184. https://doi.org/10.1530/REP-09-0377 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Stanton PG (2016) Regulation of the blood-testis barrier. Semin Cell Dev Biol 59:166–173. doi:S1084-9521(16)30179-3 [pii]CrossRefPubMedGoogle Scholar
  42. 42.
    Elkin ND, Piner JA, Sharpe RM (2010) Toxicant-induced leakage of germ cell-specific proteins from seminiferous tubules in the rat: relationship to blood-testis barrier integrity and prospects for biomonitoring. Toxicol Sci 117(2):439–448. https://doi.org/10.1093/toxsci/kfq210 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Willems A, Roesl C, Mitchell RT, Milne L, Jeffery N, Smith S, Verhoeven G, Brown P, Smith LB (2015) Sertoli cell androgen receptor signalling in adulthood is essential for post-meiotic germ cell development. Mol Reprod Dev 82(9):626–627. https://doi.org/10.1002/mrd.22506 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Burry RW (2011) Controls for immunocytochemistry: an update. J Histochem Cytochem 59(1):6–12. https://doi.org/10.1369/jhc.2010.956920 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Porter JC, Melampy RM (1952) Effects of testosterone propionate on the seminal vesicles of the rat. Endocrinology 51(5):412–420. https://doi.org/10.1210/endo-51-5-412 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Diane Rebourcet
    • 1
    • 2
  • Annalucia Darbey
    • 1
  • Michael Curley
    • 1
  • Peter O’Shaughnessy
    • 2
  • Lee B. Smith
    • 1
    • 3
    Email author
  1. 1.MRC Centre for Reproductive Health, The Queen’s Medical Research InstituteUniversity of EdinburghEdinburghUK
  2. 2.Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
  3. 3.School of Environmental and Life SciencesUniversity of NewcastleCallaghanAustralia

Personalised recommendations