Identification of S-Nitrosylated and Reversibly Oxidized Proteins by Fluorescence Switch and Complementary Techniques

  • Alicia Izquierdo-Álvarez
  • Daniel Tello
  • J. Daniel Cabrera-García
  • Antonio Martínez-Ruiz
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1747)

Abstract

S-nitrosylation and other reversible oxidative posttranslational modifications of proteins are part of the nonclassical mechanisms of nitric oxide signaling. The biotin switch technique for specifically labeling S-nitrosylated proteins opened the way to proteomic identification of these modifications. Since then, several variations and adaptations of the original method have been applied.

We describe here the protocols of several techniques that can be used for the proteomic identification of these modifications, as well as for the detailed characterization of the modification of individual proteins. The fluorescence switch technique allows the proteomic identification of S-nitrosylated proteins based on their fluorescent labeling coupled to electrophoretic separation, as well as the comparison of the overall modification in different samples. The redox fluorescence switch is an adaptation to detect all the proteins reversibly oxidized in cysteine residues. We also describe the protocols of complementary techniques that allow comparing the extent of modification of individual proteins in several conditions by biotin switch, and the identification of modified residues by differential labeling adapted for mass spectrometry identification.

Key words

Nitric oxide S-nitrosylation S-glutathionylation Oxidative posttranslational modification Reversible cysteine oxidation 

Notes

Acknowledgments

Research in our lab is supported by grants PI15/00107 and SAF2015-71521-REDC (Consolredox network) from the Spanish Government (partially funded by European Union ERDF), and by a grant from the Fundación Domingo Martínez.

References

  1. 1.
    Hernansanz-Agustín P, Izquierdo-Álvarez A, Sánchez-Gómez FJ, Ramos E, Villa-Piña T, Lamas S, Bogdanova A, Martínez-Ruiz A (2014) Acute hypoxia produces a superoxide burst in cells. Free Radic Biol Med 71:146–156.  https://doi.org/10.1016/j.freeradbiomed.2014.03.011 CrossRefPubMedGoogle Scholar
  2. 2.
    Martínez-Ruiz A, Lamas S (2007) Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences. Cardiovasc Res 75(2):220–228.  https://doi.org/10.1016/j.cardiores.2007.03.016 CrossRefPubMedGoogle Scholar
  3. 3.
    Martínez-Ruiz A, Lamas S (2004) S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res 62(1):43–52CrossRefPubMedGoogle Scholar
  4. 4.
    Martínez-Ruiz A, Araújo IM, Izquierdo-Álvarez A, Hernansanz-Agustín P, Lamas S, Serrador JM (2013) Specificity in S-nitrosylation: a short-range mechanism for NO signaling? Antioxid Redox Signal 19(11):1220–1235.  https://doi.org/10.1089/ars.2012.5066 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3(2):193–197CrossRefPubMedGoogle Scholar
  6. 6.
    Martínez-Ruiz A, Lamas S (2004) Detection and proteomic identification of S-nitrosylated proteins in endothelial cells. Arch Biochem Biophys 423(1):192–199CrossRefPubMedGoogle Scholar
  7. 7.
    Martínez-Ruiz A, Lamas S (2005) Detection and identification of S-nitrosylated proteins in endothelial cells. Methods Enzymol 396:131–139.  https://doi.org/10.1016/S0076-6879(05)96013-8 CrossRefPubMedGoogle Scholar
  8. 8.
    Martínez-Ruiz A, Lamas S (2006) Proteomic identification of S-nitrosylated proteins in endothelial cells. Meth Mol Biol 357:215–223.  https://doi.org/10.1385/1-59745-214-9:215 Google Scholar
  9. 9.
    Martínez-Ruiz A, Villanueva L, de Orduña CG, López-Ferrer D, Higueras MÁ, Tarín C, Rodríguez-Crespo I, Vázquez J, Lamas S (2005) S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A 102(24):8525–8530CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tello D, Tarín C, Ahicart P, Bretón-Romero R, Lamas S, Martínez-Ruiz A (2009) A "fluorescence switch" technique increases the sensitivity of proteomic detection and identification of S-nitrosylated proteins. Proteomics 9(23):5359–5370.  https://doi.org/10.1002/pmic.200900070 CrossRefPubMedGoogle Scholar
  11. 11.
    Izquierdo-Álvarez A, Ramos E, Villanueva J, Hernansanz-Agustín P, Fernández-Rodríguez R, Tello D, Carrascal M, Martínez-Ruiz A (2012) Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia. J Proteomics 75(17):5449–5462.  https://doi.org/10.1016/j.jprot.2012.06.035
  12. 12.
    Hernansanz-Agustín P, Ramos E, Navarro E, Parada E, Sánchez-López N, Peláez-Aguado L, Cabrera-García JD, Tello D, Buendia I, Marina A, Egea J, López MG, Bogdanova A, Martínez-Ruiz A (2017) Mitochondrial complex I deactivation is related to superoxide production in acute hypoxia. Redox Biol 12:1040–1051.  https://doi.org/10.1016/j.redox.2017.04.025 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Izquierdo-Álvarez A, Martínez-Ruiz A (2011) Thiol redox proteomics seen with fluorescent eyes: the detection of cysteine oxidative modifications by fluorescence derivatization and 2-DE. J Proteomics 75(2):329–338.  https://doi.org/10.1016/j.jprot.2011.09.013
  14. 14.
    Zhang Y, Hogg N (2004) The mechanism of transmembrane S-nitrosothiol transport. Proc Natl Acad Sci U S A 101(21):7891–7896CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jourd'heuil D, Gray L, Grisham MB (2000) S-nitrosothiol formation in blood of lipopolysaccharide-treated rats. Biochem Biophys Res Commun 273(1):22–26CrossRefPubMedGoogle Scholar
  16. 16.
    DeMaster EG, Quast BJ, Redfern B, Nagasawa HT (1995) Reaction of nitric oxide with the free sulfhydryl group of human serum albumin yields a sulfenic acid and nitrous oxide. Biochemistry 34(36):11494–11499CrossRefPubMedGoogle Scholar
  17. 17.
    Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alicia Izquierdo-Álvarez
    • 1
    • 2
  • Daniel Tello
    • 3
    • 4
  • J. Daniel Cabrera-García
    • 1
  • Antonio Martínez-Ruiz
    • 1
    • 4
  1. 1.Servicio de InmunologíaHospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP)MadridSpain
  2. 2.Biomechanics SectionKU LeuvenLeuvenBelgium
  3. 3.Unidad de InvestigaciónHospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP)MadridSpain
  4. 4.Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV)MadridSpain

Personalised recommendations