Measuring Nanoscale Chromatin Heterogeneity with Partial Wave Spectroscopic Microscopy

  • Scott Gladstein
  • Andrew Stawarz
  • Luay M. Almassalha
  • Lusik Cherkezyan
  • John E. Chandler
  • Xiang Zhou
  • Hariharan Subramanian
  • Vadim BackmanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1745)


Despite extensive research in the area, current understanding of the structural organization of higher-order chromatin topology (between 20 and 200 nm) is limited due to a lack of proper imaging techniques at these length scales. The organization of chromatin at these scales defines the physical context (nanoenvironment) in which many important biological processes occur. Improving our understanding of the nanoenvironment is crucial because it has been shown to play a critical functional role in the regulation of chemical reactions. Recent progress in partial wave spectroscopic (PWS) microscopy enables real-time measurement of higher-order chromatin organization within label-free live cells. Specifically, PWS quantifies the nanoscale variations in mass density (heterogeneity) within the cell. These advancements have made it possible to study the functional role of chromatin topology, such as its regulation of the global transcriptional state of the cell and its role in the development of cancer. In this chapter, the importance of studying chromatin topology is explained, the theory and instrumentation of PWS are described, the measurements and analysis processes for PWS are laid out in detail, and common issues, troubleshooting steps, and validation techniques are provided.


Partial wave spectroscopic microscopy Chromatin structure Chromatin topology Nanoscale imaging Fractal dimension Cancer development Heterogeneity Live cell imaging Transcriptional 

Supplementary material

Video 1

This video shows the dynamic nature of chromatin structure by continuously imaging live MDA-MB-231 cells over the course of 30 min (AVI 76806 kb)


  1. 1.
    Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the drosophila genome. Cell 148(3):458–472. CrossRefPubMedGoogle Scholar
  2. 2.
    Matsuda H, Putzel GG, Backman V, Szleifer I (2014) Macromolecular crowding as a regulator of gene transcription. Biophys J 106(8):1801–1810. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bancaud A, Huet S, Daigle N, Mozziconacci J, Beaudouin J, Ellenberg J (2009) Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J 28(24):3785–3798. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Batra J, Xu K, Qin S, Zhou HX (2009) Effect of macromolecular crowding on protein binding stability: modest stabilization and significant biological consequences. Biophys J 97(3):906–911. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Almassalha LM, Bauer GM, Chandler JE, Gladstein S, Cherkezyan L, Stypula-Cyrus Y, Weinberg S, Zhang D, Thusgaard Ruhoff P, Roy HK, Subramanian H, Chandel NS, Szleifer I, Backman V (2016) Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy. Proc Natl Acad Sci U S A 113(42):E6372–E6381. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cherkezyan L, Zhang D, Subramanian H, Capoglu I, Taflove A, Backman V (2017) Review of interferometric spectroscopy of scattered light for the quantification of subdiffractional structure of biomaterials. J Biomed Opt 22(3):030901–030901. CrossRefGoogle Scholar
  7. 7.
    Bancaud A, Lavelle C, Huet S, Ellenberg J (2012) A fractal model for nuclear organization: current evidence and biological implications. Nucleic Acids Res 40(18):8783–8792. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lebedev DV, Filatov MV, Kuklin AI, Islamov AK, Kentzinger E, Pantina R, Toperverg BP, Isaev-Ivanov VV (2005) Fractal nature of chromatin organization in interphase chicken erythrocyte nuclei: DNA structure exhibits biphasic fractal properties. FEBS Lett 579(6):1465–1468. CrossRefPubMedGoogle Scholar
  9. 9.
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wu W, Radosevich AJ, Eshein A, Nguyen T-Q, Yi J, Cherkezyan L, Roy HK, Szleifer I, Backman V (2016) Using electron microscopy to calculate optical properties of biological samples. Biomed Opt Express 7(11):4749–4762. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cherkezyan L, Stypula-Cyrus Y, Subramanian H, White C, Dela Cruz M, Wali R, Goldberg M, Bianchi L, Roy H, Backman V (2014) Nanoscale changes in chromatin organization represent the initial steps of tumorigenesis: a transmission electron microscopy study. BMC Cancer 14(1):189CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dong B, Almassalha LM, Stypula-Cyrus Y, Urban BE, Chandler JE, Nguyen T-Q, Sun C, Zhang HF, Backman V (2016) Superresolution intrinsic fluorescence imaging of chromatin utilizing native, unmodified nucleic acids for contrast. Proc Natl Acad Sci U S A 113(35):9716–9721. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, Fudenberg G, Imakaev M, Mirny LA, Wu C-t, Zhuang X (2016) Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529(7586):418–422. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mirny LA (2011) The fractal globule as a model of chromatin architecture in the cell. Chromosom Res 19(1):37–51. CrossRefGoogle Scholar
  15. 15.
    Almassalha LM, Tiwari A, Ruhoff PT, Stypula-Cyrus Y, Cherkezyan L, Matsuda H, Dela Cruz MA, Chandler JE, White C, Maneval C, Subramanian H, Szleifer I, Roy HK, Backman V (2017) The global relationship between chromatin physical topology, fractal structure, and gene expression. Sci Rep 7:41061. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zink D, Fischer AH, Nickerson JA (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4(9):677–687CrossRefPubMedGoogle Scholar
  17. 17.
    Robbins SL, Kumar V, Cotran RS (2010) Robbins and Cotran pathologic basis of disease. Saunders/Elsevier, Philadelphia, PAGoogle Scholar
  18. 18.
    Bedin V, Adam RL, de Sa BC, Landman G, Metze K (2010) Fractal dimension of chromatin is an independent prognostic factor for survival in melanoma. BMC Cancer 10:260. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tambasco M, Costello BM, Kouznetsov A, Yau A, Magliocco AM (2009) Quantifying the architectural complexity of microscopic images of histology specimens. Micron (Oxford) 40(4):486–494. CrossRefGoogle Scholar
  20. 20.
    Tambasco M, Magliocco AM (2008) Relationship between tumor grade and computed architectural complexity in breast cancer specimens. Hum Pathol 39(5):740–746. CrossRefPubMedGoogle Scholar
  21. 21.
    Metze K (2013) Fractal dimension of chromatin: potential molecular diagnostic applications for cancer prognosis. Expert Rev Mol Diagn 13(7):719–735. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Subramanian H, Roy HK, Pradhan P, Goldberg MJ, Muldoon J, Brand RE, Sturgis C, Hensing T, Ray D, Bogojevic A, Mohammed J, Chang JS, Backman V (2009) Nanoscale cellular changes in field carcinogenesis detected by partial wave spectroscopy. Cancer Res 69(13):5357–5363. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Damania D, Roy HK, Subramanian H, Weinberg DS, Rex DK, Goldberg MJ, Muldoon J, Cherkezyan L, Zhu Y, Bianchi LK, Shah D, Pradhan P, Borkar M, Lynch H, Backman V (2012) Nanocytology of rectal colonocytes to assess risk of colon cancer based on field cancerization. Cancer Res 72:2720–2727. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Konda VJ, Cherkezyan L, Subramanian L, Becker V, Goldberg MJ, Chennat JS, Karl LR, Waxman I, Roy LK, Backman V (2011) Nanoscale differences assessed by partial wave spectroscopy in the field of esophageal cancer and Barrett's esophagus. Gastroenterology 140(5):S752–S752Google Scholar
  25. 25.
    Roy HK, Brendler CB, Subramanian H, Zhang D, Maneval C, Chandler J, Bowen L, Kaul KL, Helfand BT, Wang CH, Quinn M, Petkewicz J, Paterakos M, Backman V (2015) Nanocytological field carcinogenesis detection to mitigate overdiagnosis of prostate cancer: a proof of concept study. PLoS One 10(2):e0115999. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Damania D, Roy HK, Kunte D, Hurteau JA, Subramanian H, Cherkezyan L, Krosnjar N, Shah M, Backman V (2013) Insights into the field carcinogenesis of ovarian cancer based on the nanocytology of endocervical and endometrial epithelial cells. Int J Cancer 133(5):1143–1152. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Subramanian H, Pradhan P, Liu Y, Capoglu IR, Rogers JD, Roy HK, Brand RE, Backman V (2009) Partial-wave microscopic spectroscopy detects subwavelength refractive index fluctuations: an application to cancer diagnosis. Opt Lett 34(4):518–520. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Almassalha LM, Bauer GM, Chandler JE, Gladstein S, Szleifer I, Roy HK, Backman V (2016) The greater genomic landscape: the heterogeneous evolution of cancer. Cancer Res 76:5605–5609. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cherkezyan L, Capoglu I, Subramanian H, Rogers JD, Damania D, Taflove A, Backman V (2013) Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations. Phys Rev Lett 111(3):033903CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chandler JE, Stypula-Cyrus Y, Almassalha L, Bauer G, Bowen L, Subramanian H, Szleifer I, Backman V (2016) Colocalization of cellular nanostructure using confocal fluorescence and partial wave spectroscopy. J Biophotonics 10:377–384. CrossRefPubMedGoogle Scholar
  31. 31.
    Yang F, Teves SS, Kemp CJ, Henikoff S (2014) Doxorubicin, DNA torsion, and chromatin dynamics. Biochim Biophys Acta 1845(1):84–89. PubMedGoogle Scholar
  32. 32.
    Roos WP, Thomas AD, Kaina B (2016) DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 16(1):20–33. CrossRefPubMedGoogle Scholar
  33. 33.
    Schwarz T (1998) UV light affects cell membrane and cytoplasmic targets. J Photochem Photobiol B 44(2):91–96. CrossRefPubMedGoogle Scholar
  34. 34.
    Gniadecki R, Thorn T, Vicanova J, Petersen A, Wulf HC (2000) Role of mitochondria in ultraviolet-induced oxidative stress. J Cell Biochem 80(2):216–222CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Scott Gladstein
    • 1
  • Andrew Stawarz
    • 1
  • Luay M. Almassalha
    • 1
  • Lusik Cherkezyan
    • 1
  • John E. Chandler
    • 1
  • Xiang Zhou
    • 1
  • Hariharan Subramanian
    • 1
  • Vadim Backman
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations