Advertisement

Quantification of the Metabolic Heterogeneity in Mycobacterial Cells Through the Measurement of the NADH/NAD+ Ratio Using a Genetically Encoded Sensor

  • Shabir Ahmad Bhat
  • Iram Khan Iqbal
  • Ashwani KumarEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1745)

Abstract

NADH/NAD+ levels are an indicator of the bacterial metabolic state. NAD(H) levels are maintained through coordination of pathways involved in NAD(H) synthesis and its catabolic utilization. Conventional methods of estimating NADH/NAD+ require cell disruption and suffer from low specificity and sensitivity and are inadequate in providing spatiotemporal resolution. Recently, genetically encoded biosensors of the NADH/NAD+ ratio have been developed. One of these sensors, Peredox-mCherry, was adapted for the measurement of cellular levels of NADH/NAD+ in the slow-growing Mycobacterium tuberculosis (Mtb) and the fast-growing Mycobacterium smegmatis. Importantly, the use of the engineered reporter strains of Mtb demonstrated a significantly higher heterogeneity among the bacteria residing in macrophages compared to the bacteria grown in synthetic media. Previous estimations of NADH/NAD+ levels have missed this important aspect of the biology of Mtb, which may contribute to the variable response of intracellular Mtb to different antimycobacterial agents. In this chapter, we describe the details of a method used in the generation of reporter strains for the measurement of the NADH/NAD+ ratio in mycobacteria. Importantly, once the reporter strains are created, they can be exploited with fluorescence spectroscopy, FACS, and confocal microscopy to access the dynamic changes in the NADH/NAD+ levels in intact individual bacterial cells. Although we have only described the method for the creation of reporter strains capable of measuring NADH/NAD+ in mycobacteria in this chapter, a similar method can be used for generating reporter strains for other bacterial species, as well. We believe that such reporter stains can be used in novel screens for small molecules that could alter the metabolism of bacterial cells and thus aid in the development of new class of therapeutic agents.

Keywords

Bacterial metabolic state Metabolic heterogeneity Peredox Tuberculosis pathogenesis 

Notes

Acknowledgments

This work was supported by funding from CSIR (OLP070) and Department of Biotechnology (BT/PR/5086/GBD/27/307/2011). We are thankful to Mr. Deepak Bhat for his help with confocal microscopy. We are thankful to Dr. Hariom Kushwaha for managing the AK laboratory requirements. S.A.B. and I.K.I. are grateful to the CSIR for JRF and SRF. A.K. is supported by DST, India (DST/INT/AUS/GCP-7/13 and SR/SO/BB-0037/2013), and DBT, India (BT/PR15097/MED/29/237/2011), and CSIR through Supra Institutional Projects—BSC0210G (INFECT), BSC0211E (Bugs to drugs), and Network project BSC0119F (human microbiome).

References

  1. 1.
    Canto C, Menzies KJ, Auwerx J (2015) NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22(1):31–53.  https://doi.org/10.1016/j.cmet.2015.05.023 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Beste DJ, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, Wheeler P, Klamt S, Kierzek AM, McFadden J (2007) GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol 8(5):R89.  https://doi.org/10.1186/gb-2007-8-5-r89 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sun F, Dai C, Xie J, Hu X (2012) Biochemical issues in estimation of cytosolic free NAD/NADH ratio. PLoS One 7(5):e34525.  https://doi.org/10.1371/journal.pone.0034525 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Dumollard R, Ward Z, Carroll J, Duchen MR (2007) Regulation of redox metabolism in the mouse oocyte and embryo. Development 134(3):455–465.  https://doi.org/10.1242/dev.02744. CrossRefPubMedGoogle Scholar
  5. 5.
    Chen S, Whetstine JR, Ghosh S, Hanover JA, Gali RR, Grosu P, Shi Y (2009) The conserved NAD(H)-dependent corepressor CTBP-1 regulates Caenorhabditis elegans life span. Proc Natl Acad Sci U S A 106(5):1496–1501.  https://doi.org/10.1073/pnas.0802674106 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lin SJ, Ford E, Haigis M, Liszt G, Guarente L (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18(1):12–16.  https://doi.org/10.1101/gad.1164804 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wolff KA, de la Pena AH, Nguyen HT, Pham TH, Amzel LM, Gabelli SB, Nguyen L (2015) A redox regulatory system critical for mycobacterial survival in macrophages and biofilm development. PLoS Pathog 11(4):e1004839.  https://doi.org/10.1371/journal.ppat.1004839 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Boshoff HI, Barry CE III (2005) Tuberculosis – metabolism and respiration in the absence of growth. Nat Rev Microbiol 3(1):70–80.  https://doi.org/10.1038/nrmicro1065. CrossRefPubMedGoogle Scholar
  9. 9.
    Rao SP, Alonso S, Rand L, Dick T, Pethe K (2008) The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 105(33):11945–11950.  https://doi.org/10.1073/pnas.0711697105 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bhat SA, Singh N, Trivedi A, Kansal P, Gupta P, Kumar A (2012) The mechanism of redox sensing in Mycobacterium tuberculosis. Free Radic Biol Med 53(8):1625–1641.  https://doi.org/10.1016/j.freeradbiomed.2012.08.008 CrossRefPubMedGoogle Scholar
  11. 11.
    Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A (2012) Redox biology of tuberculosis pathogenesis. Adv Microb Physiol 60:263–324.  https://doi.org/10.1016/B978-0-12-398264-3.00004-8 CrossRefPubMedGoogle Scholar
  12. 12.
    Kumar A, Farhana A, Guidry L, Saini V, Hondalus M, Steyn AJ (2011) Redox homeostasis in mycobacteria: the key to tuberculosis control? Expert Rev Mol Med 13:e39.  https://doi.org/10.1017/S1462399411002079 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Vilcheze C, Weinrick B, Wong KW, Chen B, Jacobs WR Jr (2010) NAD+ auxotrophy is bacteriocidal for the tubercle bacilli. Mol Microbiol 76(2):365–377.  https://doi.org/10.1111/j.1365-2958.2010.07099.x CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Boshoff HI, Xu X, Tahlan K, Dowd CS, Pethe K, Camacho LR, Park TH, Yun CS, Schnappinger D, Ehrt S, Williams KJ, Barry CE III (2008) Biosynthesis and recycling of nicotinamide cofactors in Mycobacterium tuberculosis. An essential role for NAD in nonreplicating bacilli. J Biol Chem 283(28):19329–19341.  https://doi.org/10.1074/jbc.M800694200 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sorci L, Ruggieri S, Raffaelli N (2014) NAD homeostasis in the bacterial response to DNA/RNA damage. DNA Repair (Amst) 23:17–26.  https://doi.org/10.1016/j.dnarep.2014.07.014 CrossRefGoogle Scholar
  16. 16.
    Rodionova IA, Schuster BM, Guinn KM, Sorci L, Scott DA, Li X, Kheterpal I, Shoen C, Cynamon M, Locher C, Rubin EJ, Osterman AL (2014) Metabolic and bactericidal effects of targeted suppression of NadD and NadE enzymes in mycobacteria. MBio 5(1).  https://doi.org/10.1128/mBio.00747-13
  17. 17.
    Williamson DH, Lund P, Krebs HA (1967) The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 103(2):514–527CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82(5):2811–2825.  https://doi.org/10.1016/S0006-3495(02)75621-X CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schneckenburger H, Wagner M, Weber P, Strauss WS, Sailer R (2004) Autofluorescence lifetime imaging of cultivated cells using a UV picosecond laser diode. J Fluoresc 14(5):649–654CrossRefPubMedGoogle Scholar
  20. 20.
    Canelas AB, van Gulik WM, Heijnen JJ (2008) Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol Bioeng 100(4):734–743.  https://doi.org/10.1002/bit.21813 CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao Y, Jin J, Hu Q, Zhou HM, Yi J, Yu Z, Xu L, Wang X, Yang Y, Loscalzo J (2011) Genetically encoded fluorescent sensors for intracellular NADH detection. Cell Metab 14(4):555–566.  https://doi.org/10.1016/j.cmet.2011.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hung YP, Albeck JG, Tantama M, Yellen G (2011) Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor. Cell Metab 14(4):545–554.  https://doi.org/10.1016/j.cmet.2011.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Brekasis D, Paget MS (2003) A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2). EMBO J 22(18):4856–4865.  https://doi.org/10.1093/emboj/cdg453 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bhat SA, Iqbal IK, Kumar A (2016) Imaging the NADH:NAD+ homeostasis for understanding the metabolic response of Mycobacterium to physiologically relevant stresses. Front Cell Infect Microbiol 6:145.  https://doi.org/10.3389/fcimb.2016.00145 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Shabir Ahmad Bhat
    • 1
  • Iram Khan Iqbal
    • 1
  • Ashwani Kumar
    • 1
    Email author
  1. 1.Council of Scientific and Industrial ResearchInstitute of Microbial TechnologyChandigarhIndia

Personalised recommendations