Advertisement

Quantitative Structure–Activity Relationship Models for Predicting Risk of Drug-Induced Liver Injury in Humans

  • Huixiao Hong
  • Jieqiang Zhu
  • Minjun Chen
  • Ping Gong
  • Chaoyang Zhang
  • Weida Tong
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Drug-induced liver injury (DILI) risk in humans is a complicated safety concern due to diverse mechanisms, various severity levels, variation in population groups, and difficulty in annotation of drugs, especially for the drugs that have been on the market for a short period of time. DILI remains a challenge for the industry and regulatory agencies. Assessing DILI risk in humans is important to assist drug development for the industry and to inform decision making on safety evaluation of drug products in regulatory science. Though various experimental methods have been used in current practices for assessment of DILI risk, in silico methods have been adopted in the field as an alternative because the development and validation of in silico models are much faster and cheaper. Many quantitative structure–activity relationship (QSAR) DILI prediction models have been reported. To better understand the QSAR models reported and to foster development of more reliable QSAR models, this chapter provides an instruction to the principals and the components of QSAR modeling, a summary on some popular algorithms and tools for QSAR modeling, and a review of QSAR models developed for prediction of DILI.

Key words

Drug-induced liver injury DILI Quantitative structure–activity relationship QSAR Prediction Chemical descriptors Algorithm Drug Safety 

References

  1. 1.
    Raschi E, De Ponti F (2017) Drug-induced liver injury: towards early prediction and risk stratification. World J Hepatol 9(1):30–37. https://doi.org/10.4254/wjh.v9.i1.30 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hamilton LA, Collins-Yoder A, Collins RE (2016) Drug-induced liver injury. AACN Adv Crit Care 27(4):430–440. https://doi.org/10.4037/aacnacc2016953 CrossRefPubMedGoogle Scholar
  3. 3.
    Mosedale M, Watkins PB (2016) Drug-induced liver injury: advances in mechanistic understanding that will inform risk management. Clin Pharmacol Ther. https://doi.org/10.1002/cpt.564
  4. 4.
    Gustafsson F et al (2014) A correlation between the in vitro drug toxicity of drugs to cell lines that express human P450s and their propensity to cause liver injury in humans. Toxicol Sci 137:189–211. https://doi.org/10.1093/toxsci/kft223 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Aleo MD et al (2014) Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump. Hepatology 60:1015–1022. https://doi.org/10.1002/hep.27206 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Atienzar FA et al (2014) Predictivity of dog co-culture model, primary human hepatocytes and HepG2 cells for the detection of hepatotoxic drugs in humans. Toxicol Appl Pharmacol 275:44–61. https://doi.org/10.1016/j.taap.2013.11.022 CrossRefPubMedGoogle Scholar
  7. 7.
    Tomida T et al (2015) Multiparametric assay using HepaRG cells for predicting drug-induced liver injury. Toxicol Lett 236:16–24. https://doi.org/10.1016/j.toxlet.2015.04.014 CrossRefPubMedGoogle Scholar
  8. 8.
    Goldring C et al (2017) Stem cell-derived models to improve mechanistic understanding and prediction of human drug-induced liver injury. Hepatology 65(2):710–721. https://doi.org/10.1002/hep.28886 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Goda K et al (2016) Usefulness of in vitro combination assays of mitochondrial dysfunction and apoptosis for the estimation of potential risk of idiosyncratic drug induced liver injury. J Toxicol Sci 41(5):605–615. https://doi.org/10.2131/jts.41.605 CrossRefPubMedGoogle Scholar
  10. 10.
    Tomida T, Okamura H, Yokoi T, Konno Y (2017) A modified multiparametric assay using HepaRG cells for predicting the degree of drug-induced liver injury risk. J Appl Toxicol 37(3):382–390. https://doi.org/10.1002/jat.3371 CrossRefPubMedGoogle Scholar
  11. 11.
    Bell CC et al (2016) Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep 6:25187. https://doi.org/10.1038/srep25187 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wu Y et al (2016) The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury. Cell Biol Toxicol 32(1):37–59. https://doi.org/10.1007/s10565-016-9316-2 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hirashima R, Itoh T, Tukey RH, Fujiwara R (2017) Prediction of drug-induced liver injury using keratinocytes. J Appl Toxicol. https://doi.org/10.1002/jat.3435
  14. 14.
    Zhang M, Chen M, Tong W (2012) Is toxicogenomics a more reliable and sensitive biomarker than conventional indicators from rats to predict drug-induced liver injury in humans? Chem Res Toxicol 25:122–129. https://doi.org/10.1021/tx200320e CrossRefPubMedGoogle Scholar
  15. 15.
    Hill A et al (2012) Comparisons between in vitro whole cell imaging and in vivo zebrafish-based approaches for identifying potential human hepatotoxicants earlier in pharmaceutical development. Drug Metab Rev 44:127–140. https://doi.org/10.3109/03602532.2011.645578 CrossRefPubMedGoogle Scholar
  16. 16.
    Chalasani N, Regev A (2016) Drug-induced liver injury in patients with preexisting chronic liver disease in drug development: how to identify and manage? Gastroenterology 151(6):1046–1051. https://doi.org/10.1053/j.gastro.2016.10.010 CrossRefPubMedGoogle Scholar
  17. 17.
    Lu RJ et al (2016) Clinical characteristics of drug-induced liver injury and related risk factors. Exp Ther Med 12(4):2606–2616. https://doi.org/10.3892/etm.2016.3627 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Friedrich ME et al (2016) Drug-induced liver injury during antidepressant treatment: results of AMSP, a Drug Surveillance Program. Int J Neuropsychopharmacol 19(4):pii:pyv126. https://doi.org/10.1093/ijnp/pyv126 CrossRefGoogle Scholar
  19. 19.
    Baekdal M, Ytting H, Skalshøi Kjær M (2017) Drug-induced liver injury: a cohort study on patients referred to the Danish transplant center over a five year period. Scand J Gastroenterol 52(4):450–454. https://doi.org/10.1080/00365521.2016.1267790 CrossRefPubMedGoogle Scholar
  20. 20.
    Hong H et al (2005) Quality control and quality assessment of data from surface-enhanced laser desorption/ionization (SELDI) time-of flight (TOF) mass spectrometry (MS). BMC Bioinformatics 6(Suppl 2):S5. https://doi.org/10.1186/1471-2105-6-S2-S5 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hong H et al (2008) Assessing batch effects of genotype calling algorithm BRLMM for the Affymetrix GeneChip Human Mapping 500 K array set using 270 HapMap samples. BMC Bioinformatics 9(Suppl 9):S17. https://doi.org/10.1186/1471-2105-9-S9-S17 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hong H et al (2012) Technical reproducibility of genotyping SNP arrays used in genome-wide association studies. PLoS One 7(9):e44483. https://doi.org/10.1371/journal.pone.0044483 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liu J, Jennings SF, Tong W, Hong H (2011) Next generation sequencing for profiling expression of miRNAs: technical progress and applications in drug development. J Biomed Sci Eng 4(10):666–676. https://doi.org/10.4236/jbise.2011.410083 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hong H et al (2013) Critical role of bioinformatics in translating huge amounts of next-generation sequencing data into personalized medicine. Sci China Life Sci 56(2):110–118. https://doi.org/10.1007/s11427-013-4439-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Hong H, Goodsaid F, Shi L, Tong W (2010) Molecular biomarkers: a US FDA effort. Biomark Med 4(2):215–225. https://doi.org/10.2217/bmm.09.81 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang W et al (2014) Whole genome sequencing of 35 individuals provides insights into the genetic architecture of Korean population. BMC Bioinformatics 15(Suppl 11):S6. https://doi.org/10.1186/1471-2105-15-S11-S6 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zhang W et al (2015) Quality control metrics improve repeatability and reproducibility of single-nucleotide variants derived from whole-genome sequencing. Pharmacogenomics J 15(4):298–309. https://doi.org/10.1038/tpj.2014.70 CrossRefPubMedGoogle Scholar
  28. 28.
    Hong H, Tong W (2014) Emerging efforts for discovering new biomarkers of liver disease and hepatotoxicity. Biomark Med 8(2):143–146. https://doi.org/10.2217/bmm.13.156 CrossRefPubMedGoogle Scholar
  29. 29.
    Koturbash I et al (2015) microRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomark Med 9(11):1153–1176. https://doi.org/10.2217/bmm.15.89 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang Y et al (2015) Molecular regulation of miRNAs and potential biomarkers in the progression of hepatic steatosis to NASH. Biomark Med 9(11):1189–1200. https://doi.org/10.2217/bmm.15.70 CrossRefPubMedGoogle Scholar
  31. 31.
    Hong H, Slikker W Jr (2015) Advancing translation of biomarkers into regulatory science. Biomark Med 9(11):1043–1046. https://doi.org/10.2217/bmm.15.104 CrossRefPubMedGoogle Scholar
  32. 32.
    Antoine DJ, Dear JW (2017) Transformative biomarkers for drug-induced liver injury: are we there yet? Biomark Med 11(2):103–106. https://doi.org/10.2217/bmm-2016-0338 CrossRefPubMedGoogle Scholar
  33. 33.
    Chen M et al (2013) Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs. Toxicol Sci 136:242–249. https://doi.org/10.1093/toxsci/kft189 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Liu Z et al (2011) Translating clinical findings into knowledge in drug safety evaluation-drug induced liver injury prediction system (DILIps). PLoS Comput Biol 7:e1002310. https://doi.org/10.1371/journal.pcbi.1002310 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Huang SH et al (2015) Developing a QSAR model for hepatotoxicity screening of the active compounds in traditional Chinese medicines. Food Chem Toxicol 78:71–77. https://doi.org/10.1016/j.fct.2015.01.020 CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang H et al (2016) Predicting drug-induced liver injury in human with Naïve Bayes classifier approach. J Comput Aided Mol Des 30:889–898. https://doi.org/10.1007/s10822-016-9972-6 CrossRefPubMedGoogle Scholar
  37. 37.
    Xu Y et al (2015) Deep learning for drug-induced liver injury. J Chem Inf Model 55:2085–2093. https://doi.org/10.1021/acs.jcim.5b00238 CrossRefPubMedGoogle Scholar
  38. 38.
    Dragovic S et al (2016) Evidence-based selection of training compounds for use in the mechanism-based integrated prediction of drug-induced liver injury in man. Arch Toxicol 90(12):2979–3003. https://doi.org/10.1007/s00204-016-1845-1 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Longo DM et al (2016) Elucidating differences in the hepatotoxic potential of tolcapone and entacapone with DILIsym®, a mechanistic model of drug-induced liver injury. CPT Pharmacometrics Syst Pharmacol 5(1):31–39. https://doi.org/10.1002/psp4.12053 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Xi L et al (2017) The in silico identification of human bile salt export pump (ABCB11) inhibitors associated with cholestatic drug-induced liver injury. Mol BioSyst 13(2):417–424. https://doi.org/10.1039/c6mb00744a CrossRefPubMedGoogle Scholar
  41. 41.
    Toropova AP, Toropov AA (2017) CORAL: binary classifications (active/inactive) for drug-induced liver injury. Toxicol Lett 268:51–57. https://doi.org/10.1016/j.toxlet.2017.01.011 CrossRefPubMedGoogle Scholar
  42. 42.
    Pizzo F, Lombardo A, Manganaro A, Benfenati E (2016) A new structure-activity relationship (SAR) model for predicting drug-induced liver injury, based on statistical and expert-based structural alerts. Front Pharmacol 7:442. https://doi.org/10.3389/fphar.2016.00442 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mulliner D et al (2016) Computational models for human and animal hepatotoxicity with a global application scope. Chem Res Toxicol 29:757–767. https://doi.org/10.1021/acs.chemrestox.5b00465 CrossRefPubMedGoogle Scholar
  44. 44.
    Chen M, Borlak J, Tong W (2013) High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology 58:388–396. https://doi.org/10.1002/hep.26208 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chen M, Borlak J, Tong W (2016) A model to predict severity of drug-induced liver injury in humans. Hepatology 64(3):931–940. https://doi.org/10.1002/hep.28678 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ivanov S et al (2017) In silico identification of proteins associated with drug-induced liver injury based on the prediction of drug-target interactions. Mol Inform. https://doi.org/10.1002/minf.201600142
  47. 47.
    Woodhead JL et al (2017) The role of quantitative systems pharmacology modeling in the prediction and explanation of idiosyncratic drug-induced liver injury. Drug Metab Pharmacokinet 32(1):40–45. https://doi.org/10.1016/j.dmpk.2016.11.008 CrossRefPubMedGoogle Scholar
  48. 48.
    Hong H, Chen M, Ng HW, Tong W (2016) QSAR models at the US FDA/NCTR. Methods Mol Biol 1425:431–459. https://doi.org/10.1007/978-1-4939-3609-0_18 CrossRefPubMedGoogle Scholar
  49. 49.
    Alpaydin E (2010) Introduction to machine learning. The MIT Press, London. ISBN 978-0-262-01243-0Google Scholar
  50. 50.
    Luo H, Mattes W, Mendrick DL, Hong H (2016) Molecular docking for identification of potential targets for drug repurposing. Curr Top Med Chem 16(30):3636–3645CrossRefPubMedGoogle Scholar
  51. 51.
    Ng HW et al (2015) Estrogenic activity data extraction and in silico prediction show the endocrine disruption potential of bisphenol A replacement compounds. Chem Res Toxicol 28(9):1784–1795. https://doi.org/10.1021/acs.chemrestox.5b00243 CrossRefPubMedGoogle Scholar
  52. 52.
    Luo H et al (2015) Molecular docking to identify associations between drugs and class I human leukocyte antigens for predicting idiosyncratic drug reactions. Comb Chem High Throughput Screen 18(3):296–304CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ng HW et al (2014) Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists. BMC Bioinformatics 15(Suppl 11):S4. https://doi.org/10.1186/1471-2105-15-S11-S4 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Shen J et al (2013) Homology modeling, molecular docking, and molecular dynamics simulations elucidated α-fetoprotein binding modes. BMC Bioinformatics 14(Suppl 14):S6. https://doi.org/10.1186/1471-2105-14-S14-S6 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26. https://doi.org/10.1016/S0169-409X(00)00129-0 CrossRefPubMedGoogle Scholar
  56. 56.
    Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341. https://doi.org/10.1016/j.ddtec.2004.11.007 CrossRefPubMedGoogle Scholar
  57. 57.
    Hong H et al (2002) Prediction of estrogen receptor binding for 58,000 chemicals using an integrated system of a tree-based model with structural alerts. Environ Health Perspect 110(1):29–36CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hong H et al (1997) Discovery of HIV-1 integrase inhibitors by pharmacophore searching. J Med Chem 40(6):930–936. https://doi.org/10.1021/jm960754h CrossRefPubMedGoogle Scholar
  59. 59.
    Neamati N et al (1998) Salicylhydrazine-containing inhibitors of HIV-1 integrase: implication for a selective chelation in the integrase active site. J Med Chem 41(17):3202–3209. https://doi.org/10.1021/jm9801760 CrossRefPubMedGoogle Scholar
  60. 60.
    Hong H et al (1998) Identification of HIV-1 integrase inhibitors based on a four-point pharmacophore. Antivir Chem Chemother 9(6):461–472. https://doi.org/10.1177/095632029800900602 CrossRefPubMedGoogle Scholar
  61. 61.
    O'Boyle NM et al (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cao DS, Xu QS, Hu QN, Liang YZ (2013) ChemoPy: freely available python package for computational biology and chemoinformatics. Bioinformatics 29(8):1092–1094. https://doi.org/10.1093/bioinformatics/btt105 CrossRefPubMedGoogle Scholar
  63. 63.
    Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32(7):1466–1474. https://doi.org/10.1002/jcc.21707 CrossRefPubMedGoogle Scholar
  64. 64.
    Hinselmann G et al (2011) jCompoundMapper: an open source Java library and command-line tool for chemical fingerprints. J Cheminform 3:3. https://doi.org/10.1186/1758-2946-3-3 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hong H et al (2008) Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 48(7):1337–1344. https://doi.org/10.1021/ci800038f CrossRefPubMedGoogle Scholar
  66. 66.
    Jurs PC, Chou JT, Yuan M (1979) Computer-assisted structure-activity studies of chemical carcinogens. A heterogeneous data set. J Med Chem 22(5):476–483. https://doi.org/10.1021/jm00191a004 CrossRefPubMedGoogle Scholar
  67. 67.
    Katritzky AR, Lobanov VS, Karelson M (1995) QSPR: the correlation and quantitative prediction of chemical and physical properties from structure. Chem Soc Rev 24:279–287. https://doi.org/10.1039/CS9952400279 CrossRefGoogle Scholar
  68. 68.
    Mekenyan O, Karabunarliev S, Bonchev D (1990) The microcomputer OASIS system for predicting the biological activity of chemical compounds. Comp Chem 14:193–200. https://doi.org/10.1016/0097-8485(90)80046-5 CrossRefGoogle Scholar
  69. 69.
    Basak SC, Magnuson VR, Niemi GJ, Regal RR (1988) Determining structural similarity of chemicals using graph-theoretic indices. Disc Appl Math 19:17–44. https://doi.org/10.1016/0166-218X(88)90004-2 CrossRefGoogle Scholar
  70. 70.
    Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110(18):5959–5967. https://doi.org/10.1021/ja00226a005 CrossRefPubMedGoogle Scholar
  71. 71.
    Hong H et al (2005) Comparative molecular field analysis (CoMFA) model using a large diverse set of natural, synthetic and environmental chemicals for binding to the androgen receptor. SAR QSAR Environ Res 14(5–6):373–388. https://doi.org/10.1080/10629360310001623962 CrossRefGoogle Scholar
  72. 72.
    Cramer RD (2015) Template CoMFA generates single 3D-QSAR models that, for twelve of twelve biological targets, predict all ChEMBL-tabulated affinities. PLoS One 10(6):e0129307. https://doi.org/10.1371/journal.pone.0129307 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37(24):4130–4146. https://doi.org/10.1021/jm00050a010 CrossRefPubMedGoogle Scholar
  74. 74.
    Punkvang A, Hannongbua S, Saparpakorn P, Pungpo P (2016) Insight into the structural requirements of aminopyrimidine derivatives for good potency against both purified enzyme and whole cells of M. tuberculosis: combination of HQSAR, CoMSIA, and MD simulation studies. J Biomol Struct Dyn 34(5):1079–1091. https://doi.org/10.1080/07391102.2015.1068711 CrossRefPubMedGoogle Scholar
  75. 75.
    Mouchlis VD et al (2012) Molecular modeling on pyrimidine-urea inhibitors of TNF-α production: an integrated approach using a combination of molecular docking, classification techniques, and 3D-QSAR CoMSIA. J Chem Inf Model 52(3):711–723. https://doi.org/10.1021/ci200579f CrossRefPubMedGoogle Scholar
  76. 76.
    Tong W et al (2003) Decision forest: combining the predictions of multiple independent decision tree models. J Chem Inf Comput Sci 43(2):525–531. https://doi.org/10.1021/ci020058s CrossRefPubMedGoogle Scholar
  77. 77.
    Hong H et al (2005) An in silico ensemble method for lead discovery: decision forest. SAR QSAR Environ Res 16(4):339–3347. https://doi.org/10.1080/10659360500203022 CrossRefPubMedGoogle Scholar
  78. 78.
    Ng HW et al (2015) Development and validation of decision forest model for estrogen receptor binding prediction of chemicals using large data sets. Chem Res Toxicol 28(12):2343–2351. https://doi.org/10.1021/acs.chemrestox.5b00358 CrossRefPubMedGoogle Scholar
  79. 79.
    Hong H et al (2016) Consensus modeling for prediction of estrogenic activity of ingredients commonly used in sunscreen products. Int J Environ Res Public Health 13(10):pii E958CrossRefGoogle Scholar
  80. 80.
    Hong H et al (2016) Experimental data extraction and in silico prediction of the estrogenic activity of renewable replacements for bisphenol A. Int J Environ Res Public Health 13(7):pii: E705. https://doi.org/10.3390/ijerph13070705 CrossRefGoogle Scholar
  81. 81.
    Hong H et al (2016) A rat α-fetoprotein binding activity prediction model to facilitate assessment of the endocrine disruption potential of environmental chemicals. Int J Environ Res Public Health 13(4):372. https://doi.org/10.3390/ijerph13040372 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Hong H et al (2004) Multiclass decision forest—a novel pattern recognition method for multiclass classification in microarray data analysis. DNA Cell Biol 23(10):685–694. https://doi.org/10.1089/dna.2004.23.685 CrossRefPubMedGoogle Scholar
  83. 83.
    Mansouri K et al (2016) CERAPP: collaborative estrogen receptor activity prediction project. Environ Health Perspect 124(7):1023–1033. https://doi.org/10.1289/ehp.1510267 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Hong H et al (2009) The accurate prediction of protein family from amino acid sequence by measuring features of sequence fragments. J Comput Biol 16(12):1671–1688. https://doi.org/10.1089/cmb.2008.0115 CrossRefPubMedGoogle Scholar
  85. 85.
    Huo H et al (2015) Machine learning methods for predicting HLA-peptide binding activity. Bioinform Biol Insights 9(Suppl 3):21–29. https://doi.org/10.4137/BBI.S29466 CrossRefGoogle Scholar
  86. 86.
    Liu J et al (2015) Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure. Chem Res Toxicol 28(4):738–751. https://doi.org/10.1021/tx500501h CrossRefPubMedGoogle Scholar
  87. 87.
    Chen M et al (2013) The liver toxicity knowledge base: a systems approach to a complex end point. Clin Pharmacol Ther 93(5):409–412. https://doi.org/10.1038/clpt.2013.16 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Chen M et al (2011) FDA-approved drug labeling for the study of drug-induced liver injury. Drug Discov Today 16(15–16):697–703. https://doi.org/10.1016/j.drudis.2011.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Chen M et al (2016) DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov Today 21:648–453. https://doi.org/10.1016/j.drudis.2016.02.015 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Igarashi Y, Nakatsu N, Yamashita T, Ono A, Ohno Y, Urushidani T, Yamada H (2015) Open TG-GATEs: a large-scale toxicogenomics database. Nucleic Acids Res 43(Database issue):D921–D927. https://doi.org/10.1093/nar/gku955 CrossRefPubMedGoogle Scholar
  91. 91.
    Arulmozhiraja S, Morita M (2004) Structure-activity relationships for the toxicity of polychlorinated dibenzofurans: approach through density functional theory-based descriptors. Chem Res Toxicol 17:348–356. https://doi.org/10.1021/tx0300380 CrossRefPubMedGoogle Scholar
  92. 92.
    Brown RD, Martin YC (1997) The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J Chem Inf Comput Sci 37:1–9. https://doi.org/10.1021/ci960373c CrossRefGoogle Scholar
  93. 93.
    Matter H, Potter T (1999) Comparing 3D pharmacophore triplets and 2D fingerprints for selecting diverse compound subsets. J Chem Inf Comput Sci 39:1211–1225. https://doi.org/10.1021/ci980185h CrossRefGoogle Scholar
  94. 94.
    Hong H, Xin X (1992) ESSESA: an expert system for structure elucidation from spectra analysis. 2. A novel algorithm of perception of the linear independent smallest set of smallest rings. Anal Chim Acta 262:179–191CrossRefGoogle Scholar
  95. 95.
    Hong H, Xin X (1992) ESSESA: an expert system for structure elucidation from spectra analysis. 3. LNSCS for chemical knowledge representation. J Chem Inf Comput Sci 32:116–120CrossRefGoogle Scholar
  96. 96.
    Hong H, Xin X (1994) ESSESA: an expert system for structure elucidation from spectra analysis. 4. Canonical representation of structures. J Chem Inf Comput Sci 34:730–734CrossRefGoogle Scholar
  97. 97.
    Hong H, Xin X (1994) ESSESA: an expert system for structure elucidation from spectra analysis. 5. Substructure constraints from from analysis of first-order 1H-NMR spectra. J Chem Inf Comput Sci 34:1259–1266CrossRefGoogle Scholar
  98. 98.
    Hong H, Han Y, Xin X, Shi Y (1995) ESSESA: an expert system for structure elucidation from spectra. 6. Substructure constraints from analysis of 13C-NMR spectra. J Chem Inf Comput Sci 35(6):979–1000CrossRefGoogle Scholar
  99. 99.
    Masui H, Hong H (2006) Spec2D: a structure elucidation system based on 1H NMR and H-H COSY spectra in organic chemistry. J Chem Inf Model 46:775–787. https://doi.org/10.1021/ci0502810 CrossRefPubMedGoogle Scholar
  100. 100.
    Hong H, Xin X (1990) ESSESA: an expert system for structure elucidation from spectra analysis. 1. The knowledge base of infrared spectra and analysis and interpretation program. J Chem Inf Comput Sci 30:203–210CrossRefGoogle Scholar
  101. 101.
    Greene N et al (2010) Developing structure-activity relationships for the prediction of hepatotoxicity. Chem Res Toxicol 23(7):1215–1222. https://doi.org/10.1021/tx1000865 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Huixiao Hong
    • 1
  • Jieqiang Zhu
    • 1
  • Minjun Chen
    • 1
  • Ping Gong
    • 2
  • Chaoyang Zhang
    • 3
  • Weida Tong
    • 1
  1. 1.Division of Bioinformatics and Biostatistics, National Center for Toxicological ResearchU.S. Food and Drug AdministrationJeffersonUSA
  2. 2.Environmental LaboratoryU.S. Army Engineer Research and Development CenterVicksburgUSA
  3. 3.School of Computer ScienceUniversity of Southern MississippiHattiesburgUSA

Personalised recommendations