Advertisement

Perspectives on the Regulatory and Clinical Science of Drug-Induced Liver Injury (DILI)

  • Mark I. AviganEmail author
  • Monica A. Muñoz
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

This chapter provides a regulatory framework of drug-induced liver injury (DILI) risk assessment, whose foundation is the understanding, identification, and evaluation of different forms of hepatotoxicity caused by a drug or biological agent. Regulatory scientists strive to translate evolving knowledge into an accurate and efficient prediction of DILI risk in humans as early as possible in a product’s life cycle. In addition, better characterization of factors that underlie individual susceptibility can lead to improved risk minimization, and ultimately enhance the balance between treatment-associated benefits and risks. Heightened DILI risk plays a critical role in the trajectory of approval for a therapeutic product. Compound development may be terminated when a signal of potentially serious DILI emerges given the theoretical risks to trial subjects and potential opportunity cost that may be incurred. The limitations of currently available analytical tools to quantify DILI risk undoubtedly have resulted in the premature discontinuation of compounds that ultimately may have been associated with negligible or acceptable levels of risk for the intended treatment population. For other compounds, an associated DILI risk may go unrecognized in the premarket setting, and only shows an unacceptable benefit–risk balance in the postmarketing setting. No drug or biological agent has been withdrawn in the US market following approval due to hepatotoxicity since the publication of the FDA Guidance for Industry on DILI Premarketing Clinical Evaluation in 2009. Nonetheless, some recently approved agents have been linked to an increased risk for DILI in vulnerable patients, resulting in the inclusion of Boxed Warnings or Warnings of hepatotoxicity in several of their product labels.

Key words

Drug-induced liver injury Hepatotoxicity Clinical trials Risk–benefit Surveillance 

Notes

Disclaimer

The views expressed are those of the authors and do not necessarily represent the position of, nor imply an endorsement from, the US Food and Drug Administration or the US Government.

References

  1. 1.
    Fontana RJ (2014) Pathogenesis of idiosyncratic drug-induced liver injury and clinical perspectives. Gastroenterology 146(4):914–928. https://doi.org/10.1053/j.gastro.2013.12.032 CrossRefPubMedGoogle Scholar
  2. 2.
    Watkins PB, Kaplowitz N, Slattery JT, Colonese CR, Colucci SV, Stewart PW, Harris SC (2006) Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily: a randomized controlled trial. JAMA 296(1):87–93. https://doi.org/10.1001/jama.296.1.87 CrossRefPubMedGoogle Scholar
  3. 3.
    Avigan MI (2013) Regulatory perspectives. In: Kaplowitz N, Deleve LD (eds) Drug-induced liver disease, 3rd edn. Academic Press, London, UK, pp 689–712CrossRefGoogle Scholar
  4. 4.
    Enhancing Benefit-Risk Assessment in Regulatory Decision-Making. Available: https://www.fda.gov/ForIndustry/UserFees/PrescriptionDrugUserFee/ucm326192.htm. Accessed 18 Mar 2017
  5. 5.
    Hepatotoxicity (textbook) first edition (1978) Zimmerman Chapter 16, p 349–369Google Scholar
  6. 6.
    Malchow-Moller A, Matzen P, Bjerregaard B, Hilden J, Holst-Christensen J, Staehr Johansen T, Altman L, Thomsen C, Juhl E (1981) Causes and characteristics of 500 consecutive cases of jaundice. Scand J Gastroenterol 16(1):1–6CrossRefGoogle Scholar
  7. 7.
    Reuben A (2004) Hy’s law. Hepatology 39(2):574–578. https://doi.org/10.1002/hep.20081 CrossRefPubMedGoogle Scholar
  8. 8.
    Temple R (2006) Hy’s law: predicting serious hepatotoxicity. Pharmacoepidemiol Drug Saf 15(4):241–243. https://doi.org/10.1002/pds.1211 CrossRefPubMedGoogle Scholar
  9. 9.
    Guidance for Industry Drug-Induced Liver Injury: Premarketing Clinical Evaluation, Final, July 2009Google Scholar
  10. 10.
    Graham DJ, Drinkard CR, Shatin D (2003) Incidence of idiopathic acute liver failure and hospitalized liver injury in patients treated with troglitazone. Am J Gastroenterol 98(1):175–179. https://doi.org/10.1111/j.1572-0241.2003.07175.x CrossRefPubMedGoogle Scholar
  11. 11.
    Graham DJ, Drinkard CR, Shatin D, Tsong Y, Burgess MJ (2001) Liver enzyme monitoring in patients treated with troglitazone. JAMA 286(7):831–833CrossRefGoogle Scholar
  12. 12.
    Knowler WC, Hamman RF, Edelstein SL, Barrett-Connor E, Ehrmann DA, Walker EA, Fowler SE, Nathan DM, Kahn SE, Diabetes Prevention Program Research G (2005) Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes 54(4):1150–1156CrossRefGoogle Scholar
  13. 13.
    Rosner B (1995) The binomial distribution. In: Rosner B (ed) Fundamentals of biostatistics. Duxbury Press, Belmont, CA, pp 82–85Google Scholar
  14. 14.
    Chalasani NP, Hayashi PH, Bonkovsky HL, Navarro VJ, Lee WM, Fontana RJ, Practice Parameters Committee of the American College of Gastroenterology (2014) ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol 109(7):950–966.; quiz 967. https://doi.org/10.1038/ajg.2014.131 CrossRefGoogle Scholar
  15. 15.
    Avigan MI, Bjornsson ES, Pasanen M, Cooper C, Andrade RJ, Watkins PB, Lewis JH, Merz M (2014) Liver safety assessment: required data elements and best practices for data collection and standardization in clinical trials. Drug Saf 37(Suppl 1):S19–S31. https://doi.org/10.1007/s40264-014-0183-6 CrossRefPubMedGoogle Scholar
  16. 16.
    Kullak-Ublick GA, Merz M, Griffel L, Kaplowitz N, Watkins PB (2014) Liver safety assessment in special populations (hepatitis B, C, and oncology trials). Drug Saf 37(Suppl 1):S57–S62. https://doi.org/10.1007/s40264-014-0186-3 CrossRefPubMedGoogle Scholar
  17. 17.
    Fried MW. Acute hepatotoxicity in HCV-cirrhotic patients treated with direct-acting antiviral agents. In: 2016 drug induced liver injury annual conference proceedings. Available: http://www.aasld.org/2016-drug-induced-liver-injury-annual-conference-proceedings
  18. 18.
    Fontana RJ. Diagnosis and management of DILI in NASH patients. In: 2016 drug induced liver injury annual conference proceedings. Available: http://www.aasld.org/2016-drug-induced-liver-injury-annual-conference-proceedings
  19. 19.
    Regev A. DILI due to cancer-immunotherapy targeting immune checkpoints: when and how to treat. In: 2016 drug induced liver injury annual conference proceedings. Available: http://www.aasld.org/2016-drug-induced-liver-injury-annual-conference-proceedings
  20. 20.
    Lin C, Khetani SR (2016) Advances in engineered liver models for investigating drug-induced liver injury. Biomed Res Int 2016:1829148. https://doi.org/10.1155/2016/1829148 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ware BR, Berger DR, Khetani SR (2015) Prediction of drug-induced liver injury in micropatterned co-cultures containing iPSC-derived human hepatocytes. Toxicol Sci 145(2):252–262. https://doi.org/10.1093/toxsci/kfv048 CrossRefPubMedGoogle Scholar
  22. 22.
    Trask OJ Jr, Moore A, LeCluyse EL (2014) A micropatterned hepatocyte coculture model for assessment of liver toxicity using high-content imaging analysis. Assay Drug Dev Technol 12(1):16–27. https://doi.org/10.1089/adt.2013.525 CrossRefGoogle Scholar
  23. 23.
    Donato MT, Gomez-Lechon MJ, Tolosa L (2017) Using high-content screening technology for studying drug-induced hepatotoxicity in preclinical studies. Expert Opin Drug Discov 12(2):201–211. https://doi.org/10.1080/17460441.2017.1271784 CrossRefPubMedGoogle Scholar
  24. 24.
    Tolosa L, Gomez-Lechon MJ, Donato MT (2015) High-content screening technology for studying drug-induced hepatotoxicity in cell models. Arch Toxicol 89(7):1007–1022. https://doi.org/10.1007/s00204-015-1503-z CrossRefPubMedGoogle Scholar
  25. 25.
    Tolosa L, Pinto S, Donato MT, Lahoz A, Castell JV, O’Connor JE, Gomez-Lechon MJ (2012) Development of a multiparametric cell-based protocol to screen and classify the hepatotoxicity potential of drugs. Toxicol Sci 127(1):187–198. https://doi.org/10.1093/toxsci/kfs083 CrossRefPubMedGoogle Scholar
  26. 26.
    Greer ML, Barber J, Eakins J, Kenna JG (2010) Cell based approaches for evaluation of drug-induced liver injury. Toxicology 268(3):125–131. https://doi.org/10.1016/j.tox.2009.08.007 CrossRefPubMedGoogle Scholar
  27. 27.
    Boelsterli UA, Lim PL (2007) Mitochondrial abnormalities—a link to idiosyncratic drug hepatotoxicity? Toxicol Appl Pharmacol 220(1):92–107. https://doi.org/10.1016/j.taap.2006.12.013 CrossRefPubMedGoogle Scholar
  28. 28.
    Maes M, Vinken M, Jaeschke H (2016) Experimental models of hepatotoxicity related to acute liver failure. Toxicol Appl Pharmacol 290:86–97. https://doi.org/10.1016/j.taap.2015.11.016 CrossRefPubMedGoogle Scholar
  29. 29.
    Bhakuni GS, Bedi O, Bariwal J, Deshmukh R, Kumar P (2016) Animal models of hepatotoxicity. Inflamm Res 65(1):13–24. https://doi.org/10.1007/s00011-015-0883-0 CrossRefPubMedGoogle Scholar
  30. 30.
    Verbeeck RK (2008) Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol 64(12):1147–1161. https://doi.org/10.1007/s00228-008-0553-z CrossRefPubMedGoogle Scholar
  31. 31.
    Shah F, Leung L, Barton HA, Will Y, Rodrigues AD, Greene N, Aleo MD (2015) Setting clinical exposure levels of concern for drug-induced liver injury (DILI) using mechanistic in vitro assays. Toxicol Sci 147(2):500–514. https://doi.org/10.1093/toxsci/kfv152 CrossRefPubMedGoogle Scholar
  32. 32.
    Verbeeck RK, Horsmans Y (1998) Effect of hepatic insufficiency on pharmacokinetics and drug dosing. Pharm World Sci 20(5):183–192CrossRefGoogle Scholar
  33. 33.
    Roth AD, Lee MY (2017) Idiosyncratic drug-induced liver injury (IDILI): potential mechanisms and predictive assays. Biomed Res Int 2017:9176937. https://doi.org/10.1155/2017/9176937 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mazaleuskaya LL, Sangkuhl K, Thorn CF, FitzGerald GA, Altman RB, Klein TE (2015) PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics 25(8):416–426. https://doi.org/10.1097/FPC.0000000000000150 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fontana RJ, Watkins PB, Bonkovsky HL, Chalasani N, Davern T, Serrano J, Rochon J, Group DS (2009) Drug-Induced Liver Injury Network (DILIN) prospective study: rationale, design and conduct. Drug Saf 32(1):55–68. https://doi.org/10.2165/00002018-200932010-00005 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Munoz MA, Kulick CG, Kortepeter CM, Levin RL, Avigan MI (2017) Liver injury associated with dimethyl fumarate in multiple sclerosis patients. Mult Scler:1352458516688351. https://doi.org/10.1177/1352458516688351
  37. 37.
    Avigan MI (2014) DILI and drug development: a regulatory perspective. Semin Liver Dis 34(2):215–226. https://doi.org/10.1055/s-0034-1375961 CrossRefPubMedGoogle Scholar
  38. 38.
    Danan G, Benichou C (1993) Causality assessment of adverse reactions to drugs—I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol 46(11):1323–1330CrossRefGoogle Scholar
  39. 39.
    Benichou C, Danan G, Flahault A (1993) Causality assessment of adverse reactions to drugs—II. An original model for validation of drug causality assessment methods: case reports with positive rechallenge. J Clin Epidemiol 46(11):1331–1336CrossRefGoogle Scholar
  40. 40.
    Roussel Uclaf Causality Assessment Method (RUCAM) in drug induced liver injury. LiverTox. Available: https://livertox.nih.gov/rucam.html. Accessed 18 Mar 2017
  41. 41.
    Danan G, Teschke R (2015) RUCAM in drug and herb induced liver injury: the update. Int J Mol Sci 17(1). https://doi.org/10.3390/ijms17010014
  42. 42.
    Tillmann HL, Barnhart HX, Serrano J, Rockey DC (2016) A novel computerized drug induced liver injury causality assessment tool (DILI-CAT). Hepatology 64:320A–321AGoogle Scholar
  43. 43.
    Hayashi PH (2016) Drug-induced liver injury network causality assessment: criteria and experience in the United States. Int J Mol Sci 17(2):201. https://doi.org/10.3390/ijms17020201 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Watkins PB, Desai M, Berkowitz SD, Peters G, Horsmans Y, Larrey D, Maddrey W (2011) Evaluation of drug-induced serious hepatotoxicity (eDISH) application of this data organization approach to phase III clinical trials of rivaroxaban after total hip or knee replacement surgery. Drug Saf 34(3):243–252. https://doi.org/10.2165/11586600-000000000-00000 CrossRefPubMedGoogle Scholar
  45. 45.
    Senior JR (2014) Evolution of the Food and Drug Administration approach to liver safety assessment for new drugs: current status and challenges. Drug Saf 37:S9–S17. https://doi.org/10.1007/s40264-014-0182-7 CrossRefPubMedGoogle Scholar
  46. 46.
    Watkins PB (2005) Idiosyncratic liver injury: challenges and approaches. Toxicol Pathol 33(1):1–5. https://doi.org/10.1080/01926230590888306 CrossRefPubMedGoogle Scholar
  47. 47.
    Fontana RJ, Seeff LB, Andrade RJ, Bjornsson E, Day CP, Serrano J, Hoofnagle JH (2010) Standardization of nomenclature and causality assessment in drug-induced liver injury: summary of a clinical research workshop. Hepatology 52(2):730–742. https://doi.org/10.1002/hep.23696 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bjornsson ES, Bergmann OM, Bjornsson HK, Kvaran RB, Olafsson S (2013) Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology 144(7):1419–1425., 1425.e1411–1413; quiz e1419–1420. https://doi.org/10.1053/j.gastro.2013.02.006 CrossRefPubMedGoogle Scholar
  49. 49.
    Zimmerman HJ (1978) Chapter 16: Drug-induced liver disease. In: Hepatotoxicity. The adverse effects of drugs and other chemicals on the liver, 1st edn. Appleton-Century-Crofts, New York, p 353Google Scholar
  50. 50.
    Castiella A, Zapata E, Lucena MI, Andrade RJ (2014) Drug-induced autoimmune liver disease: a diagnostic dilemma of an increasingly reported disease. World J Hepatol 6(4):160–168. https://doi.org/10.4254/wjh.v6.i4.160 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Vinay K, Abbas AK, Aster JC (2015) Robbins and Cotran pathologic basis of disease, 9th edn. Elsevier/Saunders, Philadelphia, PAGoogle Scholar
  52. 52.
    LiverTox: clinical and research information on drug-induced liver injury. National Institute of Diabetes and Digestive and Kidney Diseases. Available: https://livertox.nih.gov/
  53. 53.
    Brinker AD, Wassel RT, Lyndly J, Serrano J, Avigan M, Lee WM, Seeff LB (2009) Telithromycin-associated hepatotoxicity: clinical spectrum and causality assessment of 42 cases. Hepatology 49(1):250–257. https://doi.org/10.1002/hep.22620 CrossRefPubMedGoogle Scholar
  54. 54.
    Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. https://doi.org/10.1038/nrc3239 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27(4):450–461. https://doi.org/10.1016/j.ccell.2015.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kim KW, Ramaiya NH, Krajewski KM, Jagannathan JP, Tirumani SH, Srivastava A, Ibrahim N (2013) Ipilimumab associated hepatitis: imaging and clinicopathologic findings. Investig New Drugs 31(4):1071–1077. https://doi.org/10.1007/s10637-013-9939-6 CrossRefGoogle Scholar
  57. 57.
    Kleiner DE, Berman D (2012) Pathologic changes in ipilimumab-related hepatitis in patients with metastatic melanoma. Dig Dis Sci 57(8):2233–2240. https://doi.org/10.1007/s10620-012-2140-5 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, Berdelou A, Varga A, Bahleda R, Hollebecque A, Massard C, Fuerea A, Ribrag V, Gazzah A, Armand JP, Amellal N, Angevin E, Noel N, Boutros C, Mateus C, Robert C, Soria JC, Marabelle A, Lambotte O (2016) Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 54:139–148. https://doi.org/10.1016/j.ejca.2015.11.016 CrossRefPubMedGoogle Scholar
  59. 59.
    Tapper EB, Volk M (2017) Strategies to reduce 30-day readmissions in patients with cirrhosis. Curr Gastroenterol Rep 19(1):1. https://doi.org/10.1007/s11894-017-0543-3 CrossRefPubMedGoogle Scholar
  60. 60.
    Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J (2013) Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med 368(14):1365–1366. https://doi.org/10.1056/NEJMc1302338 CrossRefPubMedGoogle Scholar
  61. 61.
    Villamil A, Mullen E, Casciato P, Gadano A (2015) Interferon beta 1a-induced severe autoimmune hepatitis in patients with multiple sclerosis: report of two cases and review of the literature. Ann Hepatol 14(2):273–280CrossRefGoogle Scholar
  62. 62.
    Arruti M, Castillo-Trivino T, de la Riva P, Marti-Masso JF, Lopez de Munain A, Olascoaga J (2012) Autoimmune hepatitis in a patient with multiple sclerosis under treatment with glatiramer acetate. Rev Neurol 55(3):190–192PubMedGoogle Scholar
  63. 63.
    von Kalckreuth V, Lohse AW, Schramm C (2008) Unmasking autoimmune hepatitis under immunomodulatory treatment of multiple sclerosis—not only beta interferon. Am J Gastroenterol 103(8):2147–2148.; author reply 2148. https://doi.org/10.1111/j.1572-0241.2008.01982_9.x CrossRefGoogle Scholar
  64. 64.
    Neumann H, Csepregi A, Sailer M, Malfertheiner P (2007) Glatiramer acetate induced acute exacerbation of autoimmune hepatitis in a patient with multiple sclerosis. J Neurol 254(6):816–817. https://doi.org/10.1007/s00415-006-0441-3 CrossRefPubMedGoogle Scholar
  65. 65.
    Garcia-Buey L, Garcia-Monzon C, Rodriguez S, Borque MJ, Garcia-Sanchez A, Iglesias R, DeCastro M, Mateos FG, Vicario JL, Balas A et al (1995) Latent autoimmune hepatitis triggered during interferon therapy in patients with chronic hepatitis C. Gastroenterology 108(6):1770–1777CrossRefGoogle Scholar
  66. 66.
    La Gioia S, Bacis G, Sonzogni A, Frigeni B, Conti MZ, Vedovello M, Rottoli M (2014) Glatiramer acetate-induced hepatitis in a young female patient with multiple sclerosis. Mult Scler Relat Disord 3(6):732–734. https://doi.org/10.1016/j.msard.2014.08.001 CrossRefPubMedGoogle Scholar
  67. 67.
    Makhani N, Ngan BY, Kamath BM, Yeh EA (2013) Glatiramer acetate-induced acute hepatotoxicity in an adolescent with MS. Neurology 81(9):850–852. https://doi.org/10.1212/WNL.0b013e3182a2cc4a CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Milo R (2014) The efficacy and safety of daclizumab and its potential role in the treatment of multiple sclerosis. Ther Adv Neurol Disord 7(1):7–21. https://doi.org/10.1177/1756285613504021 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Zinbryta [Package Insert]. Biogen Inc, Cambridge, MA; 14 Dec 2016Google Scholar
  70. 70.
    Avigan M. Assessment of liver toxicity profile of DAC HYP in the clinical development program for remitting-relapsing multiple sclerosis. BLA 761029. Daclizumab High Yield Process (DAC HYP), p 164–186. Available: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/761029Orig1s000OtherR.pdf. 5 Nov 2015
  71. 71.
    Chalasani N, Regev A (2016) Drug-induced liver injury in patients with preexisting chronic liver disease in drug development: how to identify and manage? Gastroenterology 151(6):1046–1051. https://doi.org/10.1053/j.gastro.2016.10.010 CrossRefPubMedGoogle Scholar
  72. 72.
    Teschke R, Danan G (2016) Diagnosis and management of drug-induced liver injury (DILI) in patients with pre-existing liver disease. Drug Saf 39(8):729–744. https://doi.org/10.1007/s40264-016-0423-z CrossRefPubMedGoogle Scholar
  73. 73.
    Arroyo V, Moreau R, Jalan R, Gines P, Study E-CCC (2015) Acute-on-chronic liver failure: a new syndrome that will re-classify cirrhosis. J Hepatol 62(1 Suppl):S131–S143. https://doi.org/10.1016/j.jhep.2014.11.045 CrossRefPubMedGoogle Scholar
  74. 74.
    FDA Drug Safety Communication: FDA warns of .serious liver injury risk with hepatitis C treatments Viekira Pak and Technivie. Available: https://www.fda.gov/Drugs/DrugSafety/ucm468634.htm. 22 Oct 2015
  75. 75.
    Dyson JK, Hutchinson J, Harrison L, Rotimi O, Tiniakos D, Foster GR, Aldersley MA, McPherson S (2016) Liver toxicity associated with sofosbuvir, an NS5A inhibitor and ribavirin use. J Hepatol 64(1):234–238. https://doi.org/10.1016/j.jhep.2015.07.041 CrossRefPubMedGoogle Scholar
  76. 76.
    Saukkonen JJ, Cohn DL, Jasmer RM, Schenker S, Jereb JA, Nolan CM, Peloquin CA, Gordin FM, Nunes D, Strader DB, Bernardo J, Venkataramanan R, Sterling TR, Subcommittee ATSHoAT D (2006) An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med 174(8):935–952. https://doi.org/10.1164/rccm.200510-1666ST CrossRefPubMedGoogle Scholar
  77. 77.
    Ungo JR, Jones D, Ashkin D, Hollender ES, Bernstein D, Albanese AP, Pitchenik AE (1998) Antituberculosis drug-induced hepatotoxicity. The role of hepatitis C virus and the human immunodeficiency virus. Am J Respir Crit Care Med 157(6 Pt 1):1871–1876. https://doi.org/10.1164/ajrccm.157.6.9711039 CrossRefPubMedGoogle Scholar
  78. 78.
    Kramer JR, Giordano TP, Souchek J, El-Serag HB (2005) Hepatitis C coinfection increases the risk of fulminant hepatic failure in patients with HIV in the HAART era. J Hepatol 42(3):309–314. https://doi.org/10.1016/j.jhep.2004.11.017 CrossRefPubMedGoogle Scholar
  79. 79.
    Bonacini M (2004) Liver injury during highly active antiretroviral therapy: the effect of hepatitis C coinfection. Clin Infect Dis 38(Suppl 2):S104–S108. https://doi.org/10.1086/381453 CrossRefPubMedGoogle Scholar
  80. 80.
    Biologic License Application 761029. Zinbryta (daclizumab) Injection: Other Review(s), p 164–186. Available: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/761029Orig1s000OtherR.pdf
  81. 81.
    Mitchell SJ, Hilmer SN (2010) Drug-induced liver injury in older adults. Ther Adv Drug Saf 1(2):65–77. https://doi.org/10.1177/2042098610386281 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Konig SA, Siemes H, Blaker F, Boenigk E, Gross-Selbeck G, Hanefeld F, Haas N, Kohler B, Koelfen W, Korinthenberg R et al (1994) Severe hepatotoxicity during valproate therapy: an update and report of eight new fatalities. Epilepsia 35(5):1005–1015CrossRefGoogle Scholar
  83. 83.
    Bryant AE 3rd, Dreifuss FE (1996) Valproic acid hepatic fatalities. III. U.S. experience since 1986. Neurology 46(2):465–469CrossRefGoogle Scholar
  84. 84.
    Dreifuss FE, Santilli N, Langer DH, Sweeney KP, Moline KA, Menander KB (1987) Valproic acid hepatic fatalities: a retrospective review. Neurology 37(3):379–385CrossRefGoogle Scholar
  85. 85.
    Hautekeete ML, Horsmans Y, Van Waeyenberge C, Demanet C, Henrion J, Verbist L, Brenard R, Sempoux C, Michielsen PP, Yap PS, Rahier J, Geubel AP (1999) HLA association of amoxicillin-clavulanate—induced hepatitis. Gastroenterology 117(5):1181–1186CrossRefGoogle Scholar
  86. 86.
    O’Donohue J, Oien KA, Donaldson P, Underhill J, Clare M, MacSween RN, Mills PR (2000) Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut 47(5):717–720CrossRefGoogle Scholar
  87. 87.
    Kindmark A, Jawaid A, Harbron CG, Barratt BJ, OF B, Andersson TB, Carlsson S, Cederbrant KE, Gibson NJ, Armstrong M, Lagerstrom-Fermer ME, Dellsen A, Brown EM, Thornton M, Dukes C, Jenkins SC, Firth MA, Harrod GO, Pinel TH, Billing-Clason SM, Cardon LR, March RE (2008) Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J 8(3):186–195. https://doi.org/10.1038/sj.tpj.6500458 CrossRefPubMedGoogle Scholar
  88. 88.
    Singer JB, Lewitzky S, Leroy E, Yang F, Zhao X, Klickstein L, Wright TM, Meyer J, Paulding CA (2010) A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet 42(8):711–714. https://doi.org/10.1038/ng.632 CrossRefGoogle Scholar
  89. 89.
    Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A, Daly MJ, Goldstein DB, John S, Nelson MR, Graham J, Park BK, Dillon JF, Bernal W, Cordell HJ, Pirmohamed M, Aithal GP, Day CP, Study D, International SAEC (2009) HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 41(7):816–819. https://doi.org/10.1038/ng.379 CrossRefGoogle Scholar
  90. 90.
    Hirata K, Takagi H, Yamamoto M, Matsumoto T, Nishiya T, Mori K, Shimizu S, Masumoto H, Okutani Y (2008) Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J 8(1):29–33. https://doi.org/10.1038/sj.tpj.6500442 CrossRefPubMedGoogle Scholar
  91. 91.
    Spraggs CF, Budde LR, Briley LP, Bing N, Cox CJ, King KS, Whittaker JC, Mooser VE, Preston AJ, Stein SH, Cardon LR (2011) HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J Clin Oncol 29(6):667–673. https://doi.org/10.1200/JCO.2010.31.3197 CrossRefPubMedGoogle Scholar
  92. 92.
    Vuilleumier N, Rossier MF, Chiappe A, Degoumois F, Dayer P, Mermillod B, Nicod L, Desmeules J, Hochstrasser D (2006) CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. Eur J Clin Pharmacol 62(6):423–429. https://doi.org/10.1007/s00228-006-0111-5 CrossRefPubMedGoogle Scholar
  93. 93.
    Lee SW, Chung LS, Huang HH, Chuang TY, Liou YH, Wu LS (2010) NAT2 and CYP2E1 polymorphisms and susceptibility to first-line anti-tuberculosis drug-induced hepatitis. Int J Tuberc Lung Dis 14(5):622–626PubMedGoogle Scholar
  94. 94.
    Meier Y, Zodan T, Lang C, Zimmermann R, Kullak-Ublick GA, Meier PJ, Stieger B, Pauli-Magnus C (2008) Increased susceptibility for intrahepatic cholestasis of pregnancy and contraceptive-induced cholestasis in carriers of the 1331T>C polymorphism in the bile salt export pump. World J Gastroenterol 14(1):38–45CrossRefGoogle Scholar
  95. 95.
    Stewart JD, Horvath R, Baruffini E, Ferrero I, Bulst S, Watkins PB, Fontana RJ, Day CP, Chinnery PF (2010) Polymerase gamma gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology 52(5):1791–1796. https://doi.org/10.1002/hep.23891 CrossRefPubMedGoogle Scholar
  96. 96.
    Urban TJ, Goldstein DB, Watkins PB (2012) Genetic basis of susceptibility to drug-induced liver injury: what have we learned and where do we go from here? Pharmacogenomics 13(7):735–738. https://doi.org/10.2217/pgs.12.45 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9(5):356–369. https://doi.org/10.1038/nrg2344 CrossRefGoogle Scholar
  98. 98.
    Tecentriq [Package Insert]. Genentech, Inc., San Francisco, CA; 21 Oct 2016Google Scholar
  99. 99.
    Yervoy [Package Insert]. Bristol Myers Squibb, Princeton, NJ; 28 Oct 2015Google Scholar
  100. 100.
    FDA Drug Safety Communication: Liver injury warning to be removed from Letairis (ambrisentan) tablets. Available at: http://www.fda.gov/Drugs/DrugSafety/ucm245852.htm. 4 Mar 2011
  101. 101.
    Desai M. New Drug Application 21686 (Ximelagatran): Medical Officer Review. Available: https://www.fda.gov/ohrms/dockets/ac/04/briefing/2004-4069B1_06_FDA-Backgrounder-C-R-MOR.pdf

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Office of Surveillance and Epidemiology, Center for Drug Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringUSA

Personalised recommendations