Bile Salt Export Pump: Drug-Induced Liver Injury and Assessment Approaches

Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Bile acid homeostasis is maintained through the tightly regulated enterohepatic circulation of bile acids. Biliary excretion of bile acids by bile salt export pump (BSEP) is the rate-limiting step in the circulation. Impairment of BSEP function and expression results in excessive accumulation of hepatic bile acids, which are toxic to hepatocytes. Indeed, genetic deficiencies in BSEP resulting in diminished or reduced BSEP activity or cell surface expression directly cause cholestatic liver diseases including progressive familial intrahepatic cholestasis type II (PFICII) and benign intrahepatic cholestasis (BRIC) or predispose to intrahepatic cholestasis of pregnancy and drug-induced cholestasis. Drugs or compounds inhibiting BSEP activity, repressing BSEP transcription, or reducing cell surface expression of BSEP protein have the potential to induce cholestatic liver injury. Accumulating evidences reveal that inhibition of BSEP activity is one of the mechanisms for drug-induced liver injury (DILI). Studies also show that repression of BSEP transcription or reduction of its canalicular membrane expression contribute to a spectrum of cholestatic injuries. Currently, a number of in vitro methods are employed to assess the cholestatic potentials of drugs or compounds. These methods can be divided into three categories based on the mechanisms of action of the test drugs or compounds: (1) inhibition of BSEP activity; (2) repression of BSEP transcription; and (3) reduction of cell surface expression of BSEP protein. Here, applications, advantages, and limitations of these in vitro approaches are described and discussed.

Key words

Bile salt export pump BSEP Cholestasis Drug-induced liver injury DILI Drug-induced cholestasis BSEP activity BSEP transcription BSEP expression 

References

  1. 1.
    Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72:137–174PubMedCrossRefGoogle Scholar
  2. 2.
    Trauner M, Boyer JL (2003) Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 83:633–671PubMedCrossRefGoogle Scholar
  3. 3.
    Chiang JY (2004) Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 40:539–551PubMedCrossRefGoogle Scholar
  4. 4.
    Soroka CJ, Boyer JL (2014) Biosynthesis and trafficking of the bile salt export pump, BSEP: therapeutic implications of BSEP mutations. Mol Asp Med 37:3–14. https://doi.org/10.1016/j.mam.2013.05.001. CrossRefGoogle Scholar
  5. 5.
    Gerloff T, Stieger B, Hagenbuch B et al (1998) The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 273:10046–10050PubMedCrossRefGoogle Scholar
  6. 6.
    Green RM, Hoda F, Ward KL (2000) Molecular cloning and characterization of the murine bile salt export pump. Gene 241:117–123PubMedCrossRefGoogle Scholar
  7. 7.
    Kullak-Ublick GA, Stieger B, Hagenbuch B et al (2000) Hepatic transport of bile salts. Semin Liver Dis 20:273–292PubMedCrossRefGoogle Scholar
  8. 8.
    Meier PJ, Stieger B (2002) Bile salt transporters. Annu Rev Physiol 64:635–661PubMedCrossRefGoogle Scholar
  9. 9.
    Kullak-Ublick GA, Stieger B, Meier PJ (2004) Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126:322–342PubMedCrossRefGoogle Scholar
  10. 10.
    Lam P, Soroka CJ, Boyer JL (2010) The bile salt export pump: clinical and experimental aspects of genetic and acquired cholestatic liver disease. Semin Liver Dis 30:125–133. https://doi.org/10.1055/s-0030-1253222 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Strautnieks SS, Bull LN, Knisely AS et al (1998) A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 20:233–238PubMedCrossRefGoogle Scholar
  12. 12.
    Jansen PL, Strautnieks SS, Jacquemin E et al (1999) Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 117:1370–1379PubMedCrossRefGoogle Scholar
  13. 13.
    Wang L, Soroka CJ, Boyer JL (2002) The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II. J Clin Invest 110:965–972PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Scheimann AO, Strautnieks SS, Knisely AS et al (2007) Mutations in bile salt export pump (ABCB11) in two children with progressive familial intrahepatic cholestasis and cholangiocarcinoma. J Pediatr 150:556–559PubMedCrossRefGoogle Scholar
  15. 15.
    Hayashi H, Takada T, Suzuki H et al (2005) Two common PFIC2 mutations are associated with the impaired membrane trafficking of BSEP/ABCB11. Hepatology 41:916–924PubMedCrossRefGoogle Scholar
  16. 16.
    Plass JR, Mol O, Heegsma J et al (2004) A progressive familial intrahepatic cholestasis type 2 mutation causes an unstable, temperature-sensitive bile salt export pump. J Hepatol 40:24–30PubMedCrossRefGoogle Scholar
  17. 17.
    Strautnieks SS, Byrne JA, Pawlikowska L et al (2008) Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology 134:1203–1214PubMedCrossRefGoogle Scholar
  18. 18.
    Treepongkaruna S, Gaensan A, Pienvichit P et al (2009) Novel ABCB11 mutations in a Thai infant with progressive familial intrahepatic cholestasis. World J Gastroenterol 15:4339–4342PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Davit-Spraul A, Fabre M, Branchereau S et al (2010) ATP8B1 and ABCB11 analysis in 62 children with normal gamma-glutamyl transferase progressive familial intrahepatic cholestasis (PFIC): phenotypic differences between PFIC1 and PFIC2 and natural history. Hepatology 51:1645–1655. https://doi.org/10.1002/hep.23539 PubMedCrossRefGoogle Scholar
  20. 20.
    Saber S, Vazifehmand R, Bagherizadeh I et al (2013) A novel ABCB11 mutation in an Iranian girl with progressive familial intrahepatic cholestasis. Indian J Hum Genet 19:366–368. https://doi.org/10.4103/0971-6866.120813 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Francalanci P, Giovannoni I, Candusso M et al (2013) Bile salt export pump deficiency: a de novo mutation in a child compound heterozygous for ABCB11. Laboratory investigation to study pathogenic role and transmission of two novel ABCB11 mutations. Hepatol Res 43:315–319. https://doi.org/10.1111/j.1872-034X.2012.01061.x PubMedCrossRefGoogle Scholar
  22. 22.
    Vitale G, Pirillo M, Mantovani V et al (2016) Bile salt export pump deficiency disease: two novel, late onset, ABCB11 mutations identified by next generation sequencing. Ann Hepatol 15:795–800. https://doi.org/10.5604/16652681.1212618. PubMedGoogle Scholar
  23. 23.
    Lam CW, Cheung KM, Tsui MS et al (2006) A patient with novel ABCB11 gene mutations with phenotypic transition between BRIC2 and PFIC2. J Hepatol 44:240–242PubMedCrossRefGoogle Scholar
  24. 24.
    van Mil SW, van der Woerd WL, van der Brugge G et al (2004) Benign recurrent intrahepatic cholestasis type 2 is caused by mutations in ABCB11. Gastroenterology 127:379–384PubMedCrossRefGoogle Scholar
  25. 25.
    Kubitz R, Keitel V, Scheuring S et al (2006) Benign recurrent intrahepatic cholestasis associated with mutations of the bile salt export pump. J Clin Gastroenterol 40:171–175PubMedCrossRefGoogle Scholar
  26. 26.
    Eloranta ML, Häkli T, Hiltunen M et al (2003) Association of single nucleotide polymorphisms of the bile salt export pump gene with intrahepatic cholestasis of pregnancy. Scand J Gastroenterol 38:648–652PubMedCrossRefGoogle Scholar
  27. 27.
    Keitel V, Vogt C, Häussinger D et al (2006) Combined mutations of canalicular transporter proteins cause severe intrahepatic cholestasis of pregnancy. Gastroenterology 131:624–629PubMedCrossRefGoogle Scholar
  28. 28.
    Meier Y, Zodan T, Lang C et al (2008) Increased susceptibility for intrahepatic cholestasis of pregnancy and contraceptive-induced cholestasis in carriers of the 1331T>C polymorphism in the bile salt export pump. World J Gastroenterol 14:38–45PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Dixon PH, van Mil SW, Chambers J et al (2009) Contribution of variant alleles of ABCB11 to susceptibility to intrahepatic cholestasis of pregnancy. Gut 58:537–544. https://doi.org/10.1136/gut.2008.159541 PubMedCrossRefGoogle Scholar
  30. 30.
    Pauli-Magnus C, Lang T, Meier Y et al (2004) Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenetics 14:91–102PubMedCrossRefGoogle Scholar
  31. 31.
    Lang C, Meier Y, Stieger B et al (2007) Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics 17:47–60PubMedCrossRefGoogle Scholar
  32. 32.
    Ulzurrun E, Stephens C, Crespo E et al (2013) Role of chemical structures and the 1331T>C bile salt export pump polymorphism in idiosyncratic drug-induced liver injury. Liver Int 33:1378–1385PubMedCrossRefGoogle Scholar
  33. 33.
    Schubert R, Schmidt KH (1988) Structural changes in vesicle membranes and mixed micelles of various lipid compositions after binding of different bile salts. Biochemistry 27:8787–8794PubMedCrossRefGoogle Scholar
  34. 34.
    Sagawa H, Tazuma S, Kajiyama G (1993) Protection against hydrophobic bile salt-induced cell membrane damage by liposomes and hydrophilic bile salts. Am J Phys 264:G835–G839Google Scholar
  35. 35.
    Billington D, Evans CE, Godfrey PP et al (1980) Effects of bile salts on the plasma membranes of isolated rat hepatocytes. Biochem J 188:321–327PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Palmeira CM, Rolo AP (2004) Mitochondrially-mediated toxicity of bile acids. Toxicology 203:1–15PubMedCrossRefGoogle Scholar
  37. 37.
    Sokol RJ, Dahl R, Devereaux MW et al (2005) Human hepatic mitochondria generate reactive oxygen species and undergo the permeability transition in response to hydrophobic bile acids. J Pediatr Gastroenterol Nutr 41:235–243PubMedCrossRefGoogle Scholar
  38. 38.
    Rolo AP, Palmeira CM, Wallace KB (2003) Mitochondrially mediated synergistic cell killing by bile acids. Biochim Biophys Acta 1637:127–132PubMedCrossRefGoogle Scholar
  39. 39.
    Sokol RJ, Winklhofer-Roob BM, Devereaux MW et al (1995) Generation of hydroperoxides in isolated rat hepatocytes and hepatic mitochondria exposed to hydrophobic bile acids. Gastroenterology 109:1249–1256PubMedCrossRefGoogle Scholar
  40. 40.
    Iizaka T, Tsuji M, Oyamada H et al (2007) Interaction between caspase-8 activation and endoplasmic reticulum stress in glycochenodeoxycholic acid-induced apoptotic HepG2 cells. Toxicology 241:146–156PubMedCrossRefGoogle Scholar
  41. 41.
    Adachi T, Kaminaga T, Yasuda H et al (2014) The involvement of endoplasmic reticulum stress in bile acid-induced hepatocellular injury. J Clin Biochem Nutr 54:129–135. https://doi.org/10.3164/jcbn.13-46 PubMedCrossRefGoogle Scholar
  42. 42.
    Tsuchiya S, Tsuji M, Morio Y et al (2006) Involvement of endoplasmic reticulum in glycochenodeoxycholic acid-induced apoptosis in rat hepatocytes. Toxicol Lett 166:140–169PubMedCrossRefGoogle Scholar
  43. 43.
    Gujral JS, Farhood A, Bajt ML et al (2003) Neutrophils aggravate acute liver injury during obstructive cholestasis in bile duct-ligated mice. Hepatology 38:355–363PubMedCrossRefGoogle Scholar
  44. 44.
    Gujral JS, Liu J, Farhood A et al (2004) Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice. Am J Physiol Gastrointest Liver Physiol 286:G499–G507PubMedCrossRefGoogle Scholar
  45. 45.
    Allen K, Jaeschke H, Copple BL (2011) Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am J Pathol 178:175–186PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Spivey JR, Bronk SF, Gores GJ (1993) Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calcium. J Clin Invest 92:17–24PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Yerushalmi B, Dahl R, Devereaux MW et al (2001) Bile acid-induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology 33:616–626PubMedCrossRefGoogle Scholar
  48. 48.
    Rust C, Wild N, Bernt C et al (2009) Bile acid-induced apoptosis in hepatocytes is caspase-6-dependent. J Biol Chem 284:2908–2916PubMedCrossRefGoogle Scholar
  49. 49.
    Perez MJ, Briz O (2009) Bile-acid-induced cell injury and protection. World J Gastroenterol 15:1677–1689PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Galle PR, Theilmann L, Raedsch R et al (1990) Ursodeoxycholate reduces hepatotoxicity of bile salts in primary human hepatocytes. Hepatology 12:486–491PubMedCrossRefGoogle Scholar
  51. 51.
    Woolbright BL, Dorko K, Antoine DJ et al (2015) Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis. Toxicol Appl Pharmacol 283:168–177PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Fickert P, Trauner M, Fuchsbichler A et al (2005) Oncosis represents the main type of cell death in mouse models of cholestasis. J Hepatol 42:378–385PubMedCrossRefGoogle Scholar
  53. 53.
    Reuben A, Koch DG, Lee WM et al (2010) Acute Liver Failure Study Group. Drug-induced acute liver failure: results of a U.S. multicenter, prospective study. Hepatology 52:2065–2076PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sarges P, Steinberg JM, Lewis JH (2016) Drug-induced liver injury: highlights from a review of the 2015 literature. Drug Saf 39:801–821PubMedCrossRefGoogle Scholar
  55. 55.
    Lewis JH (2015) The art and science of diagnosing and managing drug-induced liver injury in 2015 and beyond. Clin Gastroenterol Hepatol 13:2173–2189.e8PubMedCrossRefGoogle Scholar
  56. 56.
    Vuppalanchi R, Liangpunsakul S, Chalasani N (2007) Etiology of new-onset jaundice: how often is it caused by idiosyncratic drug-induced liver injury in the United States? Am J Gastroenterol 102:558–562PubMedCrossRefGoogle Scholar
  57. 57.
    Kim SH, Naisbitt DJ (2016) Update on advances in research on idiosyncratic drug-induced liver injury. Allergy Asthma Immunol Res 8:3–11. https://doi.org/10.4168/aair.2016.8.1.3 PubMedCrossRefGoogle Scholar
  58. 58.
    Abboud G, Kaplowitz N (2007) Drug-induced liver injury. Drug Saf 30:277–294PubMedCrossRefGoogle Scholar
  59. 59.
    Fattinger K, Funk C, Pantze M et al (2001) The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther 69:223–231PubMedCrossRefGoogle Scholar
  60. 60.
    Kostrubsky SE, Strom SC, Kalgutkar AS et al (2006) Inhibition of hepatobiliary transport as a predictive method for clinical hepatotoxicity of nefazodone. Toxicol Sci 90:451–459PubMedCrossRefGoogle Scholar
  61. 61.
    Morgan RE, Trauner M, van Staden CJ et al (2010) Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci 118:485–500PubMedCrossRefGoogle Scholar
  62. 62.
    Ogimura E, Sekine S, Horie T (2011) Bile salt export pump inhibitors are associated with bile acid-dependent drug-induced toxicity in sandwich-cultured hepatocytes. Biochem Biophys Res Commun 416:313–317. https://doi.org/10.1016/j.bbrc.2011.11.032 PubMedCrossRefGoogle Scholar
  63. 63.
    Guo YX, Xu XF, Zhang QZ et al (2015) The inhibition of hepatic bile acids transporters Ntcp and Bsep is involved in the pathogenesis of isoniazid/rifampicin-induced hepatotoxicity. Toxicol Mech Methods 25:382–387. https://doi.org/10.3109/15376516.2015.1033074 PubMedCrossRefGoogle Scholar
  64. 64.
    Pedersen JM, Matsson P, Bergström CA et al (2013) Early identification of clinically relevant drug interactions with the human bile salt export pump (BSEP/ABCB11). Toxicol Sci 136:328–343. https://doi.org/10.1093/toxsci/kft197 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zhang J, He K, Cai L et al (2016) Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse. Chem Biol Interact 255:45–54. https://doi.org/10.1016/j.cbi.2016.03.019 PubMedCrossRefGoogle Scholar
  66. 66.
    Kenna JG (2014) Current concepts in drug-induced bile salt export pump (BSEP) interference. Curr Protoc Toxicol 61:23.7.1–23.715. https://doi.org/10.1002/0471140856.tx2307s61 CrossRefGoogle Scholar
  67. 67.
    Funk C, Ponelle C, Scheuermann G et al (2001) Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: in vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat. Mol Pharmacol 59:627–635PubMedCrossRefGoogle Scholar
  68. 68.
    Stieger B, Fattinger K, Madon J et al (2000) Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 118:422–430PubMedCrossRefGoogle Scholar
  69. 69.
    Rodrigues AD, Lai Y, Cvijic ME et al (2014) Drug-induced perturbations of the bile acid pool, cholestasis, and hepatotoxicity: mechanistic considerations beyond the direct inhibition of the bile salt export pump. Drug Metab Dispos 42:566–574. https://doi.org/10.1124/dmd.113.054205 PubMedCrossRefGoogle Scholar
  70. 70.
    Byrne JA, Strautnieks SS, Mieli-Vergani G et al (2002) The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology 123:1649–1658PubMedCrossRefGoogle Scholar
  71. 71.
    Wolf KK, Vora S, Webster LO et al (2010) Use of cassette dosing in sandwich-cultured rat and human hepatocytes to identify drugs that inhibit bile acid transport. Toxicol In Vitro 24:297–309. https://doi.org/10.1016/j.tiv.2009.08.009 PubMedCrossRefGoogle Scholar
  72. 72.
    Dawson S, Stahl S, Paul N et al (2012) In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab Dispos 40:130–138PubMedCrossRefGoogle Scholar
  73. 73.
    Cheng Y, Woolf TF, Gan J et al (2016) In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: a review. Chem Biol Interact 255:23–30. https://doi.org/10.1016/j.cbi.2015.11.029 PubMedCrossRefGoogle Scholar
  74. 74.
    Aleo MD, Luo Y, Swiss R et al (2014) Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump. Hepatology 60:1015–1022. https://doi.org/10.1002/hep.27206 PubMedCrossRefGoogle Scholar
  75. 75.
    Sakurai A, Kurata A, Onishi Y et al (2007) Prediction of drug-induced intrahepatic cholestasis: in vitro screening and QSAR analysis of drugs inhibiting the human bile salt export pump. Expert Opin Drug Saf 6:71–86PubMedCrossRefGoogle Scholar
  76. 76.
    Kis E, Ioja E, Rajnai Z et al (2012) BSEP inhibition: in vitro screens to assess cholestatic potential of drugs. Toxicol In Vitro 26:1294–1299. https://doi.org/10.1016/j.tiv.2011.11.002 PubMedCrossRefGoogle Scholar
  77. 77.
    Tang H, Shen DR, Han YH et al (2013) Development of novel, 384-well high-throughput assay panels for human drug transporters: drug interaction and safety assessment in support of discovery research. J Biomol Screen 18:1072–1083. https://doi.org/10.1177/1087057113494807 PubMedCrossRefGoogle Scholar
  78. 78.
    Kaimal R, Song X, Yan B et al (2009) Differential modulation of farnesoid X receptor signaling pathway by the thiazolidinediones. J Pharmacol Exp Ther 330:125–134. https://doi.org/10.1124/jpet.109.151233 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Song X, Vasilenko A, Chen Y et al (2014) Transcriptional dynamics of bile salt export pump during pregnancy: mechanisms and implications in intrahepatic cholestasis of pregnancy. Hepatology 60:1993–2007. https://doi.org/10.1002/hep.27171 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Yu J, Lo JL, Huang L et al (2002) Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity. J Biol Chem 277:31441–31447PubMedCrossRefGoogle Scholar
  81. 81.
    Donato MT, López-Riera M, Castell JV et al (2016) Both cholestatic and steatotic drugs trigger extensive alterations in the mRNA level of biliary transporters in rat hepatocytes: application to develop new predictive biomarkers for early drug development. Toxicol Lett 263:58–67. https://doi.org/10.1016/j.toxlet.2016.10.008 PubMedCrossRefGoogle Scholar
  82. 82.
    Garzel B, Yang H, Zhang L et al (2014) The role of bile salt export pump gene repression in drug-induced cholestatic liver toxicity. Drug Metab Dispos 42:318–122. https://doi.org/10.1124/dmd.113.054189 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Zollner G, Thueringer A, Lackner C et al (2014) Alterations of canalicular ATP-binding cassette transporter expression in drug-induced liver injury. Digestion 90:81–88. https://doi.org/10.1159/000365003 PubMedCrossRefGoogle Scholar
  84. 84.
    Shoda J, Kano M, Oda K et al (2001) The expression levels of plasma membrane transporters in the cholestatic liver of patients undergoing biliary drainage and their association with the impairment of biliary secretory function. Am J Gastroenterol 96:3368–3378PubMedCrossRefGoogle Scholar
  85. 85.
    Zollner G, Fickert P, Zenz R et al (2001) Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 33:633–646PubMedCrossRefGoogle Scholar
  86. 86.
    Kipp H, Arias IM (2000) Intracellular trafficking and regulation of canalicular ATP-binding cassette transporters. Semin Liver Dis 20:339–351PubMedCrossRefGoogle Scholar
  87. 87.
    Hayashi H, Sugiyama Y (2013) Bile salt export pump (BSEP/ABCB11): trafficking and sorting disturbances. Curr Mol Pharmacol 6:95–103PubMedCrossRefGoogle Scholar
  88. 88.
    Elferink MG, Olinga P, Draaisma AL et al (2004) LPS-induced downregulation of MRP2 and BSEP in human liver is due to a posttranscriptional process. Am J Physiol Gastrointest Liver Physiol 287:G1008–G1016PubMedCrossRefGoogle Scholar
  89. 89.
    Lam P, Pearson CL, Soroka CJ et al (2007) Levels of plasma membrane expression in progressive and benign mutations of the bile salt export pump (Bsep/Abcb11) correlate with severity of cholestatic diseases. Am J Physiol Cell Physiol 293:C1709–C1716PubMedCrossRefGoogle Scholar
  90. 90.
    Román ID, Fernández-Moreno MD, Fueyo JA, Roma MG, Coleman R (2003) Cyclosporin A induced internalization of the bile salt export pump in isolated rat hepatocyte couplets. Toxicol Sci 71:276–281PubMedCrossRefGoogle Scholar
  91. 91.
    Micheline D, Emmanuel J, Serge E (2002) Effect of ursodeoxycholic acid on the expression of the hepatocellular bile acid transporters (Ntcp and bsep) in rats with estrogen-induced cholestasis. J Pediatr Gastroenterol Nutr 35:185–191PubMedCrossRefGoogle Scholar
  92. 92.
    Crocenzi FA, Mottino AD, Sanchez Pozzi EJ et al (2003) Impaired localisation and transport function of canalicular Bsep in taurolithocholate induced cholestasis in the rat. Gut 52:1170–1177PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Crocenzi FA, Mottino AD, Cao J et al (2003) Estradiol-17beta-D-glucuronide induces endocytic internalization of Bsep in rats. Am J Physiol Gastrointest Liver Physiol 285:G449–G459PubMedCrossRefGoogle Scholar
  94. 94.
    Zinchuk V, Zinchuk O, Okada T (2005) Experimental LPS-induced cholestasis alters subcellular distribution and affects colocalization of Mrp2 and Bsep proteins: a quantitative colocalization study. Microsc Res Tech 67:65–70PubMedCrossRefGoogle Scholar
  95. 95.
    Roma MG, Crocenzi FA, Mottino AD (2008) Dynamic localization of hepatocellular transporters in health and disease. World J Gastroenterol 14:6786–6801PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Byrne JA, Strautnieks SS, Ihrke G et al (2009) Missense mutations and single nucleotide polymorphisms in ABCB11 impair bile salt export pump processing and function or disrupt pre-messenger RNA splicing. Hepatology 49:553–567PubMedCrossRefGoogle Scholar
  97. 97.
    Noé J, Stieger B, Meier PJ (2002) Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology 123:1659–1666PubMedCrossRefGoogle Scholar
  98. 98.
    Marroquin LD, Bonin PD, Keefer J et al (2017) Assessment of bile salt export pump (BSEP) inhibition in membrane vesicles using radioactive and LC/MS-based detection methods. Curr Protoc Toxicol 71:14.14.1–14.14.20. https://doi.org/10.1002/cptx.15 CrossRefGoogle Scholar
  99. 99.
    van Staden CJ, Morgan RE, Ramachandran B et al (2012) Membrane vesicle ABC transporter assays for drug safety assessment. Curr Protoc Toxicol. Chapter 23:Unit 23.5. https://doi.org/10.1002/0471140856.tx2305s54.
  100. 100.
    Stieger B, O’Neill B, Meier PJ (1992) ATP-dependent bile-salt transport in canalicular rat liver plasma-membrane vesicles. Biochem J 284:67–74PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Adachi Y, Kobayashi H, Kurumi Y et al (1991) ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles. Hepatology 14:655–659PubMedGoogle Scholar
  102. 102.
    Nishida T, Gatmaitan Z, Che M et al (1991) Rat liver canalicular membrane vesicles contain an ATP-dependent bile acid transport system. Proc Natl Acad Sci U S A 88:6590–6594PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kis E, Rajnai Z, Ioja E et al (2009) Mouse Bsep ATPase assay: a nonradioactive tool for assessment of the cholestatic potential of drugs. J Biomol Screen 14:10–15. https://doi.org/10.1177/1087057108326145 PubMedCrossRefGoogle Scholar
  104. 104.
    Mita S, Suzuki H, Akita H et al (2006) Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs. Drug Metab Dispos 34:1575–1581PubMedCrossRefGoogle Scholar
  105. 105.
    Mita S, Suzuki H, Akita H et al (2006) Vectorial transport of unconjugated and conjugated bile salts by monolayers of LLC-PK1 cells doubly transfected with human NTCP and BSEP or with rat Ntcp and Bsep. Am J Physiol Gastrointest Liver Physiol 290:G550–G556PubMedCrossRefGoogle Scholar
  106. 106.
    Cai SY, Wang L, Ballatori N et al (2001) Bile salt export pump is highly conserved during vertebrate evolution and its expression is inhibited by PFIC type II mutations. Am J Physiol Gastrointest Liver Physiol 281:G316–G322PubMedCrossRefGoogle Scholar
  107. 107.
    Kis E, Ioja E, Nagy T et al (2009) Effect of membrane cholesterol on BSEP/Bsep activity: species specificity studies for substrates and inhibitors. Drug Metab Dispos 37:1878–1886PubMedCrossRefGoogle Scholar
  108. 108.
    Ho RH, Leake BF, Kilkenny DM et al (2010) Polymorphic variants in the human bile salt export pump (BSEP; ABCB11): functional characterization and interindividual variability. Pharmacogenet Genomics 20:45–57PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Guyot C, Hofstetter L, Stieger B (2014) Differential effects of membrane cholesterol content on the transport activity of multidrug resistance-associated protein 2 (ABCC2) and of the bile salt export pump (ABCB11). Mol Pharmacol 85:909–920. https://doi.org/10.1124/mol.114.092262 PubMedCrossRefGoogle Scholar
  110. 110.
    Janossy J (2009) PREDEASY™ Mouse Bsep ATPase assay. http://www.solvobiotech.com/science-letter/predeasy-mouse-bsep-atpase-assay
  111. 111.
    Harris MJ, Kagawa T, Dawson PA et al (2004) Taurocholate transport by hepatic and intestinal bile acid transporters is independent of FIC1 overexpression in Madin-Darby canine kidney cells. J Gastroenterol Hepatol 19:819–825PubMedCrossRefGoogle Scholar
  112. 112.
    He K, Zhang J, Cai L et al (2014) Inhibition of bile salt export by marketed drugs in primary hepatocytes from human, monkey, dog, rat, and mouse, toxicol supplement. Toxicol Sci 138(1)Google Scholar
  113. 113.
    LeCluyse EL, Audus KL, Hochman JH (1994) Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am J Phys 266:C1764–C1774CrossRefGoogle Scholar
  114. 114.
    Liu X, LeCluyse EL, Brouwer KR et al (1999) Biliary excretion in primary rat hepatocytes cultured in a collagen-sandwich configuration. Am J Phys 277:G12–G21Google Scholar
  115. 115.
    Chandra P, Lecluyse EL, Brouwer KL (2001) Optimization of culture conditions for determining hepatobiliary disposition of taurocholate in sandwich-cultured rat hepatocytes. In Vitro Cell Dev Biol Anim 37:380–385PubMedCrossRefGoogle Scholar
  116. 116.
    Swift B, Pfeifer ND, Brouwer KL (2010) Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 42:446–471PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Swift B, Brouwer KL (2010) Influence of seeding density and extracellular matrix on bile acid transport and mrp4 expression in sandwich-cultured mouse hepatocytes. Mol Pharm 7:491–500PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Bi YA, Kazolias D, Duignan DB (2006) Use of cryopreserved human hepatocytes in sandwich culture to measure hepatobiliary transport. Drug Metab Dispos 34:1658–1665PubMedCrossRefGoogle Scholar
  119. 119.
    Lepist EI, Gillies H, Smith W et al (2014) Evaluation of the endothelin receptor antagonists ambrisentan, bosentan, macitentan, and sitaxsentan as hepatobiliary transporter inhibitors and substrates in sandwich-cultured human hepatocytes. PLoS One 9:e87548. https://doi.org/10.1371/journal.pone.0087548 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Yang K, Pfeifer ND, Köck K et al (2015) Species differences in hepatobiliary disposition of taurocholic acid in human and rat sandwich-cultured hepatocytes: implications for drug-induced liver injury. J Pharmacol Exp Ther 353:415–423. https://doi.org/10.1124/jpet.114.221564 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Perry CH, Smith WR, St Claire RL 3rd et al (2011) Automated applications of sandwich-cultured hepatocytes in the evaluation of hepatic drug transport. J Biomol Screen 16:427–435. https://doi.org/10.1177/1087057111400192 PubMedCrossRefGoogle Scholar
  122. 122.
    Liu X, LeCluyse EL, Brouwer KR et al (1999) Use of Ca2þ modulation to evaluate biliary excretion in sandwich-cultured rat hepatocytes. J Pharmacol Exp Ther 289:1592–1599PubMedGoogle Scholar
  123. 123.
    Reed DJ, Pascoe GA, Thomas CE (1990) Extracellular calcium effects on cell viability and thiol homeostasis. Environ Health Perspect 84:113–120PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Diao L, Li N, Brayman TG et al (2010) Regulation of MRP2/ABCC2 and BSEP/ABCB11 expression in sandwich cultured human and rat hepatocytes exposed to inflammatory cytokines TNF-alpha, IL-6, and IL-1beta. J Biol Chem 285:31185–31192. https://doi.org/10.1074/jbc.M110.107805. PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ware BR, Berger DR, Khetani SR (2015) Prediction of drug-induced liver injury in micropatterned co-cultures containing iPSC-derived human hepatocytes. Toxicol Sci 145:252–262. https://doi.org/10.1093/toxsci/kfv048 PubMedCrossRefGoogle Scholar
  126. 126.
    Trask OJ Jr, Moore A, LeCluyse EL (2014) A micropatterned hepatocyte coculture model for assessment of liver toxicity using high-content imaging analysis. Assay Drug Dev Technol 12:16–27. https://doi.org/10.1089/adt.2013.525 PubMedCrossRefGoogle Scholar
  127. 127.
    Khetani SR, Kanchagar C, Ukairo O et al (2013) Use of micropatterned cocultures to detect compounds that cause drug-induced liver injury in humans. Toxicol Sci 132:107–117. https://doi.org/10.1093/toxsci/kfs326 PubMedCrossRefGoogle Scholar
  128. 128.
    Shulman M, Nahmias Y (2013) Long-term culture and coculture of primary rat and human hepatocytes. Methods Mol Biol 945:287–302. https://doi.org/10.1007/978-1-62703-125-7_17 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Ananthanarayanan M, Balasubramanian N, Makishima M et al (2001) Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 276:28857–28865PubMedCrossRefGoogle Scholar
  130. 130.
    Plass JR, Mol O, Heegsma J et al (2002) Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology 35:589–596PubMedCrossRefGoogle Scholar
  131. 131.
    Deng R, Yang D, Radke A et al (2007) Hypolipidemic agent guggulsterone regulates the expression of human bile salt export pump: dominance of transactivation over FXR-mediated antagonism. J Pharmacol Exp Ther 320:1153–1162PubMedCrossRefGoogle Scholar
  132. 132.
    Song X, Kaimal R, Yan B et al (2008) Liver receptor homolog 1 transcriptionally regulates human bile salt export pump expression. J Lipid Res 49:973–984PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Weerachayaphorn J, Cai SY, Soroka CJ et al (2009) Nuclear factor erythroid 2-related factor 2 is a positive regulator of human bile salt export pump expression. Hepatology 50:1588–1596PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Deng R, Yang D, Yang J et al (2006) Oxysterol 22(R)-hydroxycholesterol induces the expression of the bile salt export pump through nuclear receptor farsenoid X receptor but not liver X receptor. J Pharmacol Exp Ther 317:317–325PubMedCrossRefGoogle Scholar
  135. 135.
    Song X, Chen Y, Valanejad L et al (2013) Mechanistic insights into isoform-dependent and species-specific regulation of bile salt export pump by farnesoid X receptor. J Lipid Res 54:3030–3044. https://doi.org/10.1194/jlr.M038323 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Chen Y, Song X, Valanejad L et al (2013) Bile salt export pump is dysregulated with altered farnesoid X receptor isoform expression in patients with hepatocellular carcinoma. Hepatology 57:1530–1541. https://doi.org/10.1002/hep.26187 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Dombrowski F, Stieger B, Beuers U (2006) Tauroursodeoxycholic acid inserts the bile salt export pump into canalicular membranes of cholestatic rat liver. Lab Investig 86:166–174PubMedCrossRefGoogle Scholar
  138. 138.
    Hayashi H, Sugiyama Y (2007) 4-Phenylbutyrate enhances the cell surface expression and the transport capacity of wild-type and mutated bile salt export pumps. Hepatology 45:1506–1516PubMedCrossRefGoogle Scholar
  139. 139.
    Gonzales E, Grosse B, Schuller B et al (2015) Targeted pharmacotherapy in progressive familial intrahepatic cholestasis type 2: evidence for improvement of cholestasis with 4-phenylbutyrate. Hepatology 62:558–566. https://doi.org/10.1002/hep.27767 PubMedCrossRefGoogle Scholar
  140. 140.
    Hayashi H, Naoi S, Hirose Y et al (2016) Successful treatment with 4-phenylbutyrate in a patient with benign recurrent intrahepatic cholestasis type 2 refractory to biliary drainage and bilirubin absorption. Hepatol Res 46:192–200. https://doi.org/10.1111/hepr.12561 PubMedCrossRefGoogle Scholar
  141. 141.
    Crocenzi FA, Basiglio CL, Pérez LM et al (2005) Silibinin prevents cholestasis-associated retrieval of the bile salt export pump, Bsep, in isolated rat hepatocyte couplets: possible involvement of cAMP. Biochem Pharmacol 69:1113–1120PubMedCrossRefGoogle Scholar
  142. 142.
    Mochizuki K, Kagawa T, Numari A et al (2007) Two N-linked glycans are required to maintain the transport activity of the bile salt export pump (ABCB11) in MDCK II cells. Am J Physiol Gastrointest Liver Physiol 292:G818–G828PubMedCrossRefGoogle Scholar
  143. 143.
    Kubitz R, Sütfels G, Kühlkamp T et al (2004) Trafficking of the bile salt export pump from the Golgi to the canalicular membrane is regulated by the p38 MAP kinase. Gastroenterology 126:541–553PubMedCrossRefGoogle Scholar
  144. 144.
    Hayashi H, Sugiyama Y (2009) Short-chain ubiquitination is associated with the degradation rate of a cell-surface-resident bile salt export pump (BSEP/ABCB11). Mol Pharmacol 75:143–150PubMedCrossRefGoogle Scholar
  145. 145.
    Wang L, Dong H, Soroka CJ et al (2008) Degradation of the bile salt export pump at endoplasmic reticulum in progressive familial intrahepatic cholestasis type II. Hepatology 48:1558–1569PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Black CB, Duensing TD, Trinkle LS et al (2011) Cell-based screening using high-throughput flow cytometry. Assay Drug Dev Technol 9:13–20. https://doi.org/10.1089/adt.2010.0308 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Gedye CA, Hussain A, Paterson J et al (2014) Cell surface profiling using high-throughput flow cytometry: a platform for biomarker discovery and analysis of cellular heterogeneity. PLoS One 9:e105602. https://doi.org/10.1371/journal.pone.0105602 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Imagawa K, Takayama K, Isoyama S, Tanikawa K, Shinkai M, Harada K, Tachibana M, Sakurai F, Noguchi E, Hirata K, Kage M, Kawabata K, Sumazaki R, Mizuguchi H (2017) Generation of a bile salt export pump deficiency model using patient-specific induced pluripotent stem cell-derived hepatocyte-like cells. Sci Rep 7:41806. https://doi.org/10.1038/srep41806. PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Lundquist P, Englund G, Skogastierna C et al (2014) Functional ATP-binding cassette drug efflux transporters in isolated human and rat hepatocytes significantly affect assessment of drug disposition. Drug Metab Dispos 42:448–458. https://doi.org/10.1124/dmd.113.054528 PubMedCrossRefGoogle Scholar
  150. 150.
    Kruglov EA, Gautam S, Guerra MT et al (2011) Type 2 inositol 1,4,5-trisphosphate receptor modulates bile salt export pump activity in rat hepatocytes. Hepatology 54:1790–1999. https://doi.org/10.1002/hep.24548 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Barber JA, Stahl SH, Summers C et al (2015) Quantification of drug-induced inhibition of canalicular cholyl-l-lysyl-fluorescein excretion from hepatocytes by high content cell imaging. Toxicol Sci 148:48–59. https://doi.org/10.1093/toxsci/kfv159 PubMedCrossRefGoogle Scholar
  152. 152.
    Qiu L, Finley J, Taimi M et al (2015) High-content imaging in human and rat hepatocytes using the fluorescent dyes CLF and CMFDA is not specific enough to assess BSEP/Bsep and/or MRP2/Mrp2 inhibition by cholestatic drugs. Appl In Vitro Toxicol 1:198–212CrossRefGoogle Scholar
  153. 153.
    Boutros M, Heigwer F, Laufer C (2015) Microscopy-based high-content screening. Cell 163:1314–1325. https://doi.org/10.1016/j.cell.2015.11.007 PubMedCrossRefGoogle Scholar
  154. 154.
    Morgan RE, van Staden CJ, Chen Y et al (2013) A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development. Toxicol Sci 136:216–241. https://doi.org/10.1093/toxsci/kft176 PubMedCrossRefGoogle Scholar
  155. 155.
    Mosedale M, Watkins PB (2017) Drug-induced liver injury: advances in mechanistic understanding that will inform risk management. Clin Pharmacol Ther 101:469–480. https://doi.org/10.1002/cpt.564 PubMedCrossRefGoogle Scholar
  156. 156.
    Schadt HS, Wolf A, Pognan F et al (2016) Bile acids in drug induced liver injury: key players and surrogate markers. Clin Res Hepatol Gastroenterol 40:257–266. https://doi.org/10.1016/j.clinre.2015.12.017 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical and Pharmaceutical Sciences, College of PharmacyUniversity of Rhode IslandKingstonUSA

Personalised recommendations