Skip to main content

The EPR Method for Detecting Nitric Oxide in Plant Senescence

  • Protocol
  • First Online:
Plant Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1744))

Abstract

Nitric oxide (NO) is gaining increasing attention as a central molecule with diverse signaling functions. It has been shown that NO acts as a negative regulator of leaf senescence. In this chapter, we describe a highly selective method, electron paramagnetic resonance ([EPR], also known as electron spin resonance [ESR]), for NO determination in leaf senescence. An iron complex of ferrous and mononitrosyl dithiocarbamate (Fe2+(DETC)2) is used as a chelating agent for NO. Using ethyl acetate as extracting solvent, the NOFe2+(DETC)2 complex is extracted and determined by EPR spectrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signaling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  2. Crawford NM, Guo FQ (2005) New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci 10:195–200

    Article  CAS  PubMed  Google Scholar 

  3. Mur LA, Carver TL, Prats E (2006) NO way to live; the various roles of nitric oxide in plant-pathogen interactions. J Exp Bot 57:489–505

    Article  CAS  PubMed  Google Scholar 

  4. Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mishina TE, Lamb C, Zeier J (2007) Expression of a NO degrading enzyme induces a senescence programme in Arabidopsis. Plant Cell Environ 30:39–52

    Article  CAS  PubMed  Google Scholar 

  6. Corpas FJ, Barroso JB, Carreras A et al (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hung KT, Kao CH (2003) Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. J Plant Physiol 160:871–879

    Article  CAS  PubMed  Google Scholar 

  8. Hung KT, Kao CH (2004) Nitric oxide acts as an antioxidant and delays methyl jasmonate-induced senescence of rice leaves. J Plant Physiol 161:43–52

    Article  CAS  PubMed  Google Scholar 

  9. Eum HL, Hwang DK, Lee SK (2009) Nitric oxide reduced chlorophyll degradation in broccoli (Brassica oleracea L. var. italica) florets during senescence. Food Sci Technol Int 15:223–228

    Article  CAS  Google Scholar 

  10. Eum HL, Lee SK (2007) Nitric oxide treatment reduced chlorophyll degradation of broccoli florets during senescence. HortSci 42:927–927

    Google Scholar 

  11. Jasid S, Galatro A, Javier Villordo J et al (2009) Role of nitric oxide in soybean cotyledon senescence. Plant Sci 176:662–668

    Article  CAS  Google Scholar 

  12. Liu F, Guo FQ (2013) Nitric oxide deficiency accelerates chlorophyll breakdown and stability loss of thylakoid membranes during dark-induced leaf senescence in Arabidopsis. PLoS One 8:e56345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Conrath U, Amoroso G, Köhle H et al (2004) Noninvasive online detection of nitric oxide from plants and some others organisms by mass spectrometry. Plant J 38:1015–1022

    Article  CAS  PubMed  Google Scholar 

  14. Delledonne M, Xia YJ, Dixon RA et al (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  15. Clarke A, Desikan R, Hurst RD et al (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667–677

    Article  CAS  PubMed  Google Scholar 

  16. Orozco-CĂ¡rdenas ML, Ryan CA (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130:487–493

    Article  PubMed  PubMed Central  Google Scholar 

  17. Leshem YY, Pinchasov Y (2000) Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch.) and avocados Persea americana (Mill.) J Exp Bot 51:1471–1473

    CAS  PubMed  Google Scholar 

  18. Pagnussat GC, Simontacchi M, Puntarulo S et al (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129:954–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang X, Stettmaier K, Michel C et al (2004) Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218:938–946

    Article  CAS  PubMed  Google Scholar 

  20. Modolo LV, Augusto O, Almeida IMG et al (2005) Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae. FEBS Lett 579:3814–3820

    Article  CAS  PubMed  Google Scholar 

  21. Yamasaki H, Shimoji H, Ohshiro Y et al (2001) Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria. Nitric Oxide 5:261–270

    Article  CAS  PubMed  Google Scholar 

  22. Mur LA, Santosa IE, Laarhoven LJ et al (2005) Laser photoacoustic detection allows in planta detection of nitric oxide in tobacco following challenge with avirulent and virulent Pseudomonas syringae pathovars. Plant Physiol 138:1247–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morot-Gaudry-Talarmain Y, Rockel P, Moureaux T et al (2002) Nitrite accumulation and nitric oxide emission in relation to cellular signaling in nitrite reductase antisense tobacco. Planta 215:708–715

    Article  CAS  PubMed  Google Scholar 

  24. Foissner I, Wendehenne D, Langebartels C et al (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    Article  CAS  PubMed  Google Scholar 

  25. Ma W, Smigel A, Walker RK et al (2010) Leaf senescence signaling: the Ca2+-conducting Arabidopsis cyclic nucleotide gated channel2 acts through nitric oxide to repress senescence programming. Plant Physiol 154:733–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kleschyov AL, Wenzel P, Munzel T (2007) Electron paramagnetic resonance (EPR) spin trapping of biological nitric oxide. J Chromatogr B Analyt Technol Biomed Life Sci 851:12–20

    Article  CAS  PubMed  Google Scholar 

  27. MĂ¼lsch A, Mordvintcev P, Vanin A (1992) Quantification of nitric oxide in biological samples by electron spin resonance spectroscopy. Neuroprotocols 1:165–173

    Article  Google Scholar 

  28. Kleschyov AL, Mollnau H, Oelze M et al (2000) Spin trapping of vascular nitric oxide using colloid Fe(II)-diethyldithiocarbamate. Biochem Biophys Res Commun 275:672–677

    Article  CAS  PubMed  Google Scholar 

  29. MĂ¼gge A, Elwell JH, Peterson TE et al (1991) Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity. Am J Phys 260:C219–C225

    Article  Google Scholar 

  30. Munzel T, Hink U, Yigit H et al (1999) Role of superoxide dismutase in in vivo and in vitro nitrate tolerance. Br J Pharmacol 127:1224–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsuchiya K, Takasugi M, Minakuchi K et al (1996) Sensitive quantitation of nitric oxide by EPR spectroscopy. Free Radic Biol Med 21:733–737

    Article  CAS  PubMed  Google Scholar 

  32. Xu Y, Cao Y, Tao Y et al (2005) The ESR method to determine nitric oxide in plants. Methods Enzymol 396:84–92

    Article  CAS  PubMed  Google Scholar 

  33. Kotake Y, Tanigawa T, Tanigawa M et al (1995) Spin trapping isotopically-labelled nitric oxide produced from [15N]L-arginine and [17O]dioxygen by activated macrophages using a water soluble Fe(11)-dithiocarbamate spin trap. Free Radic Res 23:287–295

    Article  CAS  PubMed  Google Scholar 

  34. Zweier JL, Wang P, Kuppusamy P (1995) Direct measurement of nitric oxide generation in the ischemic heart using electron paramagnetic resonance spectroscopy. J Biol Chem 270:304–307

    Article  CAS  PubMed  Google Scholar 

  35. Tsuchiya K, Yoshizumi M, Houchi H et al (2000) Nitric oxide-forming reaction between the iron-N-methyl-Dglucamine dithiocarbamate complex and nitrite. J Biol Chem 275:1551–1556

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aizhen Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sun, A. (2018). The EPR Method for Detecting Nitric Oxide in Plant Senescence. In: Guo, Y. (eds) Plant Senescence. Methods in Molecular Biology, vol 1744. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7672-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7672-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7670-6

  • Online ISBN: 978-1-4939-7672-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics