Magnetic Particle-Based Immunoprecipitation of Nanoscale Extracellular Vesicles from Biofluids

  • Pete Heinzelman
Part of the Methods in Molecular Biology book series (MIMB, volume 1740)


Analysis of nanoscale extracellular vesicles (nsEVs) present in blood, cell culture media, and other biofluids has shown tremendous promise in enabling the development of noninvasive blood-based clinical diagnostic tests, predicting and monitoring the efficacy of treatment programs, and providing molecular level insights into pathology that can enlighten new drug targets in the contexts of health conditions such as cancer and Alzheimer’s Disease (AD). In this chapter, we present methods for using magnetic particle-based immunoprecipitation to enrich highly purified populations of nsEVs directly from plasma, serum, and other biofluids. These methods enable downstream analysis of nsEV protein and nucleic acid constituents in the contexts of both global omics profiling and quantification of individual protein or nucleic acid species of interest. Additionally, these methods allow the researcher to either enrich total nsEV populations or enrich nsEVs derived from a particular tissue type from the overall nsEV population. The methods described here are compatible with parallel processing of dozens of biofluid samples and can be valuable tools for enabling nsEV analyses that have high translational relevance in the development of both novel therapeutics and noninvasive diagnostic assays.


Proteomics Extracellular vesicle Exosome Ultracentrifugation Diagnostics Liquid biopsy Immunoprecipitation Transcriptomics Next-generation sequencing 


  1. 1.
    Cocucci E, Meldolesi J (2015) Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 25:364–372CrossRefGoogle Scholar
  2. 2.
    Yoshioka Y et al (2014) Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat Commun 5:3591CrossRefGoogle Scholar
  3. 3.
    He M, Crow J, Roth M, Zeng Y, Godwin AK (2014) Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 14:3773–3780CrossRefGoogle Scholar
  4. 4.
    Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, Abner EL, Petersen RC, Federoff HJ, Miller BL, Goetzl EJ (2015) Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement 11:600–607CrossRefGoogle Scholar
  5. 5.
    Goetzl EJ, Boxer A, Schwartz JB, Abner EL, Petersen RC, Miller BL, Kapogiannis D (2015) Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology 85(1):40–47CrossRefGoogle Scholar
  6. 6.
    Goetzl EJ, Boxer A, Schwartz JB, Abner EL, Petersen RC, Miller BL, Carlson OD, Mustapic M, Kapogiannis D (2015) Low neural exosomal levels of cellular survival factors in Alzheimer’s disease. Ann Clin Transl Neurol 2:769–773CrossRefGoogle Scholar
  7. 7.
    Kapogiannis D, Boxer A, Schwartz JB, Abner EL, Biragyn A, Masharani U, Frassetto L, Petersen RC, Miller BL, Goetzl EJ (2015) Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer’s disease. FASEB J 29(2):589–596CrossRefGoogle Scholar
  8. 8.
    Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, Li Y, Aro P, Dator R, He C, Hipp MJ, Zabetian CP, Peskind ER, Hu SC, Quinn JF, Galasko DR, Banks WA, Zhang J (2014) Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 128:639–650CrossRefGoogle Scholar
  9. 9.
    Schey K, Luther J, Rose K (2015) Proteomics characterization of exosome cargo. Methods 87:75–82CrossRefGoogle Scholar
  10. 10.
    Laurent LC, Abdel-Mageed AB, Adelson PD, Arango J, Balaj L, Breakefield X, Carlson E, Carter BS, Majem B, Chen CC, Cocucci E, Danielson K, Courtright A, Das S, Abd Elmageed ZY, Enderle D, Ezrin A, Ferrer M, Freedman J, Galas D, Gandhi R, Huentelman MJ, Van Keuren-Jensen K, Kalani Y, Kim Y, Krichevsky AM, Lai C, Lal-Nag M, Laurent CD, Leonardo T, Li F, Malenica I, Mondal D, Nejad P, Patel T, Raffai RL, Rubio R, Skog J, Spetzler R, Sun J, Tanriverdi K, Vickers K, Wang L, Wang Y, Wei Z, Weiner HL, Wong D, Yan IK, Yeri A, Gould S (2015) Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. J Extracell Vesicles 4:26533CrossRefGoogle Scholar
  11. 11.
    Giallombardo M, Chacártegui Borrás J, Castiglia M, Van Der Steen N, Mertens I, Pauwels P, Peeters M, Rolfo C (2016) Exosomal miRNA analysis in non-small cell lung cancer (NSCLC) patients’ plasma through qPCR: a feasible liquid biopsy tool. J Vis Exp (111)Google Scholar
  12. 12.
    Caradec J, Kharmate G, Hosseini-Beheshti E, Adomat H, Gleave M, Guns E (2014) Reproducibility and efficiency of serum-derived exosome extraction methods. Clin Biochem 47:1286–1292CrossRefGoogle Scholar
  13. 13.
    Kanninen KM, Bister N, Koistinaho J, Malm T (2015) Exosomes as new diagnostic tools in CNS diseases. Biochim Biophys Acta S09:292–296Google Scholar
  14. 14.
    Webber J, Clayton A (2013) How pure are your vesicles? J Extracell Vesicles 10:2. CrossRefGoogle Scholar
  15. 15.
    Xie H, Griffin TJ (2006) Trade-off between high sensitivity and increased potential for false positive peptide sequence matches using a two-dimensional linear ion trap for tandem mass spectrometry-based proteomics. J Proteome Res 5(4):1003–1009CrossRefGoogle Scholar
  16. 16.
    Franquesa M, Hoogduijn MJ, Ripoll E, Luk F, Salih M, Betjes MG, Torras J, Baan CC, Grinyó JM, Merino AM (2014) Update on controls for isolation and quantification methodology of extracellular vesicles derived from adipose tissue mesenchymal stem cells. Front Immunol 5:525CrossRefGoogle Scholar
  17. 17.
    Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV (2013) The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci 14(9):18925–18958CrossRefGoogle Scholar
  18. 18.
    Rudnick SI, Adams GP (2007) Affinity and avidity in antibody-based tumor targeting. Cancer Biother Radiopharm 24:155–161CrossRefGoogle Scholar
  19. 19.
    Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E (2012) The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem 287:43108–43115CrossRefGoogle Scholar
  20. 20.
    Heinzelman P, Bilousova T, Campagna J, John V (2016) Nanoscale extracellular vesicle analysis in Alzheimer’s disease diagnosis and therapy. Int J Alzheimers Dis 2016:8053139PubMedPubMedCentralGoogle Scholar
  21. 21.
    Heinzelman P, Powers D, Wohlschlegel J, John V (2017). Shotgun proteomic profiling of bloodborne nanoscale extracellular vesicles. Book chapter in press at Methods in BiobankingGoogle Scholar
  22. 22.
    Shi M, Kovac A, Korff A, Cook TJ, Ginghina C, Bullock KM, Yang L, Stewart T, Zheng D, Aro P, Atik A, Kerr KF, Zabetian CP, Peskind ER, Hu SC, Quinn JF, Galasko DR, Montine TJ, Banks WA, Zhang J (2016) CNS tau efflux via exosomes is likely increased in Parkinson’s disease but not in Alzheimer’s disease. Alzheimers Dement 12:1125–1131CrossRefGoogle Scholar
  23. 23.
    Crossland R, Norden J, Bibby L, Davis J, Dickinson A (2016) Evaluation of optimal extracellular vesicle small RNA isolation and qRT-PCR normalisation for serum and urine. J Immunol Methods 429:39–49CrossRefGoogle Scholar
  24. 24.
    Momen-Heravi F, Balaj L, Alian S, Trachtenberg AJ, Hochberg FH, Skog J, Kuo WP (2012) Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front Physiol 3:162PubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA, Loguidice L, Soto H, Garrett M, Zhu LD, Sivaraman S, Chen C, Wong ET, Carter BS, Hochberg FH, Breakefield XO, Skog J (2013) BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids 2:e109CrossRefGoogle Scholar
  26. 26.
    Stern RA, Tripodis Y, Baugh CM, Fritts NG, Martin BM, Chaisson C, Cantu RC, Joyce JA, Shah S, Ikezu T, Zhang J, Gercel-Taylor C, Taylor DD (2016) Preliminary study of plasma exosomal tau as a potential biomarker for chronic traumatic encephalopathy. J Alzheimers Dis 51:1099–1109CrossRefGoogle Scholar
  27. 27.
    Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J, Williams C, Rodriguez-Barrueco R, Silva JM, Zhang W, Hearn S, Elemento O, Paknejad N, Manova-Todorova K, Welte K, Bromberg J, Peinado H, Lyden D (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24:766–769CrossRefGoogle Scholar
  28. 28.
    Matse JH, Yoshizawa J, Wang X, Elashoff D, Bolscher JG, Leemans CR, Pegtel MD, Wong DT, Bloemena E (2015) Human salivary micro-RNA in patients with parotid salivary gland neoplasms. PLoS One 10(11):e0142264CrossRefGoogle Scholar
  29. 29.
    Matse JH, Yoshizawa J, Wang X, Elashoff D, Bolscher JG, Veerman EC, Bloemena E, Wong DT (2013) Discovery and prevalidation of salivary extracellular microRNA biomarkers panel for the noninvasive detection of benign and malignant parotid gland tumors. Clin Cancer Res 19:3032–3038PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Pete Heinzelman
    • 1
  1. 1.Department of NeuroscienceMayo Clinic-JacksonvilleJacksonvilleUSA

Personalised recommendations