Advertisement

Isolation and Expansion of Schwann Cells from Transgenic Mouse Models

  • Jihyun Kim
  • Haesun A. KimEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1739)

Abstract

The most widely used method (Brockes’ method) for preparing primary Schwann cell culture uses neonatal rat sciatic nerves as the primary source of Schwann cells. The procedure is relatively simple and yields a highly purified population of Schwann cells in a short period of time. The method has also been used to prepare Schwann cells from mice, however, with limitation. For example, Brockes’ method is not applicable when the genotypes of mouse neonates are unknown or if the mouse mutants do not develop to term. We described a method ideal for preparing Schwann cells in a transgenic/knockout mouse study. The method uses embryonic dorsal root ganglia as the primary source of Schwann cells and allows preparing separate, highly purified Schwann cell cultures from individual mouse embryos in less than 2 weeks.

Key words

Mouse Schwann cells Mouse embryos Dorsal root ganglia 

References

  1. 1.
    Brockes JP, Fields KL, Raff MC (1979) Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res 165(1):105–118CrossRefPubMedGoogle Scholar
  2. 2.
    Manent J, Oguievetskaia K, Bayer J, Ratner N, Giovannini M (2003) Magnetic cell sorting for enriching Schwann cells from adult mouse peripheral nerves. J Neurosci Methods 123(2):167–173CrossRefPubMedGoogle Scholar
  3. 3.
    Seilheimer B, Schachner M (1987) Regulation of neural cell adhesion molecule expression on cultured mouse Schwann cells by nerve growth factor. EMBO J 6(6):1611–1616PubMedPubMedCentralGoogle Scholar
  4. 4.
    Shine HD, Sidman RL (1984) Immunoreactive myelin basic proteins are not detected when shiverer mutant Schwann cells and fibroblasts are co-cultured with normal neurons. J Cell Biol 98(4):1291–1295CrossRefPubMedGoogle Scholar
  5. 5.
    Stevens B, Tanner S, Fields RD (1998) Control of myelination by specific patterns of neural impulses. J Neurosci 18(22):9303–9311PubMedGoogle Scholar
  6. 6.
    Zhang BT, Hikawa N, Horie H, Takenaka T (1995) Mitogen induced proliferation of isolated adult mouse Schwann cells. J Neurosci Res 41(5):648–654CrossRefPubMedGoogle Scholar
  7. 7.
    Kim HA, Rosenbaum T, Marchionni MA, Ratner N, DeClue JE (1995) Schwann cells from neurofibromin deficient mice exhibit activation of p21ras, inhibition of cell proliferation and morphological changes. Oncogene 11(2):325–335PubMedGoogle Scholar
  8. 8.
    Kim HA, Ling B, Ratner N (1997) Nf1-deficient mouse Schwann cells are angiogenic and invasive and can be induced to hyperproliferate: reversion of some phenotypes by an inhibitor of farnesyl protein transferase. Mol Cell Biol 17(2):862–872CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA (1994) Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 7(3):353–361CrossRefPubMedGoogle Scholar
  10. 10.
    Brannan CI, Perkins AS, Vogel KS et al (1994) Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 8(9):1019–1029CrossRefPubMedGoogle Scholar
  11. 11.
    Ng A, Logan AM, Schmidt EJ, Robinson FL (2013) The CMT4B disease-causing phosphatases Mtmr2 and Mtmr13 localize to the Schwann cell cytoplasm and endomembrane compartments, where they depend upon each other to achieve wild-type levels of protein expression. Hum Mol Genet 22(8):1493–1506CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ratner N, Williams JP, Kordich JJ, Kim HA (2005) Schwann cell preparation from single mouse embryos: analyses of neurofibromin function in Schwann cells. Methods Enzymol 407:22–33Google Scholar
  13. 13.
    Chen Z, Liu C, Patel AJ, Liao CP, Wang Y, Le LQ (2014) Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma. Cancer Cell 26(5):695–706CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    De Vries GH, Boullerne AI (2010) Glial cell lines: an overview. Neurochem Res 35(12):1978–2000CrossRefPubMedGoogle Scholar
  15. 15.
    Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K et al (2015) Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell 26(19):3489–3503CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Miyamoto Y, Torii T, Kawahara K, Tanoue A, Yamauchi J (2016) Dock8 interacts with Nck1 in mediating Schwann cell precursor migration. Biochem Biophys Rep 6:113–123Google Scholar
  17. 17.
    Reuss DE, Habel A, Hagenlocher C, Mucha J, Ackermann U, Tessmer C et al (2014) Neurofibromin specific antibody differentiates malignant peripheral nerve sheath tumors (MPNST) from other spindle cell neoplasms. Acta Neuropathol 127(4):565–572CrossRefPubMedGoogle Scholar
  18. 18.
    Torii T, Miyamoto Y, Takada S, Tsumura H, Arai M, Nakamura K et al (2014) In vivo knockdown of ErbB3 in mice inhibits Schwann cell precursor migration. Biochem Biophys Res Commun 452(3):782–788CrossRefPubMedGoogle Scholar
  19. 19.
    Torii T, Miyamoto Y, Yamamoto M, Ohbuchi K, Tsumura H, Kawahara K et al (2015) Arf6 mediates Schwann cell differentiation and myelination. Biochem Biophys Res Commun 465(3):450–457CrossRefPubMedGoogle Scholar
  20. 20.
    Wu J, Liu W, Williams JP, Ratner N (2017) EGFR-Stat3 signalling in nerve glial cells modifies neurofibroma initiation. Oncogene 36:1669–1677Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesRutgers UniversityNewarkUSA

Personalised recommendations