HILIC-MS/MS Multi-Targeted Method for Metabolomics Applications

  • Christina Virgiliou
  • Helen G. Gika
  • Georgios A. Theodoridis
Part of the Methods in Molecular Biology book series (MIMB, volume 1738)


Metabolomics aims at the identification and quantification of key-end point metabolites, basically polar, in order to study changes in biochemical activities in response to pathophysiological stimuli or genetic modifications. Targeted profiling assays have enjoyed a growing popularity during the last years with LC-MS/MS as a powerful tool for development of such (semi-) quantitative methods for a large number of metabolites. Here we describe a method for absolute quantification of ca. 100 metabolites belonging to key metabolite classes such as sugars, amino acids, nucleotides, organic acids, and amines with a hydrophilic interaction liquid chromatography (HILIC) system comprised of ultra (high) performance liquid chromatography (UHPLC) with detection on a triple-quadrupole mass spectrometer operating in both positive and negative electrospray ionization modes.

Key words

HILIC-MS/MS Metabolic profiling Targeted metabolomics Polar analytes 


  1. 1.
    Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189CrossRefGoogle Scholar
  2. 2.
    Nicholson JK, Lindon JC (2008) Systems biology: Metabonomics. Nature 455:1054–1056CrossRefGoogle Scholar
  3. 3.
    Nicholson JK, Connelly J, Lindon JC et al (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161CrossRefGoogle Scholar
  4. 4.
    Theodoridis GA, Gika HG, Wilson ID (2011) Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. Mass Spectrom Rev 30:884–906PubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhou B, Xiao JF, Tuli L, Ressom HW (2012) LC-MS-based metabolomics. Mol BioSyst 8:470–481CrossRefGoogle Scholar
  6. 6.
    Fiehn O, Robertson D, Griffin J et al (2007) The metabolomics standards initiative (MSI). Metabolomics 3:175–178CrossRefGoogle Scholar
  7. 7.
    Theodoridis GA, Gika HG, Want EJ et al (2012) Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal Chim Acta 711:7–16CrossRefGoogle Scholar
  8. 8.
    Verpoorte R, Choi YH, Kim HK (2010) Metabolomics: will it stay? Phytochem Anal 21:2–3CrossRefGoogle Scholar
  9. 9.
    Griffiths WJ, Koal T, Wang Y et al (2010) Targeted metabolomics for biomarker discovery. Angew Chem Int Ed Engl 49:5426–5445CrossRefGoogle Scholar
  10. 10.
    Michopoulos F, Whalley N, Theodoridis G et al (2014) Targeted profiling of polar intracellular metabolites using ion-pair-high performance liquid chromatography and -ultra high performance liquid chromatography coupled to tandem mass spectrom. : applications to serum, urine and tissue extracts. J Chromatogr A 1349:60–68CrossRefGoogle Scholar
  11. 11.
    Roberts LD, Souza AL, Gerszten RE et al Targeted metabolomics. Curr Protoc Mol Biol 98:302.1–302.24Google Scholar
  12. 12.
    Gika HG, Theodoridis GA, Vrhovsek U et al (2012) Quantitative profiling of polar primary metabolites using hydrophilic interaction ultrahigh performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1259:121–127CrossRefGoogle Scholar
  13. 13.
    Schiesel S, Lämmerhofer M, Lindner W (2010) Multitarget quantitative metabolic profiling of hydrophilic metabolites in fermentation broths of β-lactam antibiotics production by HILIC-ESI-MS/MS. Anal Bioanal Chem 396:1655–1679CrossRefGoogle Scholar
  14. 14.
    Coulier L, Bas R, Jespersen S et al (2006) Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry. Anal Chem 78:6573–6582CrossRefGoogle Scholar
  15. 15.
    Buescher JM, Moco S, Sauer U et al (2010) Ultrahigh performance liquid chromatography–tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem 82:4403–4412CrossRefGoogle Scholar
  16. 16.
    Virgiliou C, Sampsonidis I, Gika HG et al (2015) Development and validation of a HILIC-MS/MS multitargeted method for metabolomics applications. Electrophoresis 36:2215–2225CrossRefGoogle Scholar
  17. 17.
    Sampsonidis I, Witting M, Koch W et al (2015) Computational analysis and ratiometric comparison approaches aimed to assist column selection in hydrophilic interaction liquid chromatography–tandem mass spectrometry targeted metabolomics. J Chromatogr A 1406:145–155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Christina Virgiliou
    • 1
  • Helen G. Gika
    • 2
  • Georgios A. Theodoridis
    • 1
  1. 1.Laboratory of Forensic Medicine and Toxicology, Department of ChemistryAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of MedicineAristotle UniversityThessalonikiGreece

Personalised recommendations