GC-MS Metabolomic Profiling of Protic Metabolites Following Heptafluorobutyl Chloroformate Mediated Dispersive Liquid Microextraction Sample Preparation Protocol

  • Petr Hušek
  • Zdeněk Švagera
  • Dagmar Hanzlíková
  • Iva Karlínová
  • Lucie Řimnáčová
  • Helena Zahradníčková
  • Petr Šimek
Part of the Methods in Molecular Biology book series (MIMB, volume 1738)


A simple analytical workflow is described for gas chromatographic-mass spectrometry (GC-MS)-based metabolomic profiling of protic metabolites, particularly amino-carboxylic species in biological matrices. The sample preparation is carried out directly in aqueous samples and uses simultaneous in situ heptafluorobutyl chloroformate (HFBCF) derivatization and dispersive liquid-liquid microextraction (DLLME), followed by GC-MS analysis in single-ion monitoring (SIM) mode. The protocol involves ten simple pipetting steps and provides quantitative analysis of 132 metabolites by using two internal standards. A comment on each analytical step and explaining notes are provided with particular attention to the GC-MS analysis of 112 physiological metabolites in human urine.

Key words

Metabolomic profiling GC-MS Dispersive liquid-liquid microextraction Chloroformate derivatization Urine Quantitative analysis 



This work was supported by the Czech Science Foundation, project No. 17-22276S.


  1. 1.
    Andrews MA (1989) Capillary gas-chromatographic analysis of monosaccharides – improvements and comparisons using trifluoroacetylation and trimethylsilylation of sugar o-benzyl-oximes and o-methyl-oximes. Carbohydr Res 194:1–19.  https://doi.org/10.1016/0008-6215(89)85001-3 CrossRefPubMedGoogle Scholar
  2. 2.
    Kostal V, Zahradnickova H, Simek P et al (2007) Multiple component system of sugars and polyols in the overwintering spruce bark beetle, Ips typographus. J Insect Physiol 53(6):580–586.  https://doi.org/10.1016/j.jinphys.2007.02.009 CrossRefPubMedGoogle Scholar
  3. 3.
    Hill M, Parizek A, Kancheva R et al (2010) Steroid metabolome in plasma from the umbilical artery, umbilical vein, maternal cubital vein and in amniotic fluid in normal and preterm labor. J Steroid Biochem Mol Biol 121(3–5):594–610.  https://doi.org/10.1016/j.jsbmb.2009.10.012 CrossRefPubMedGoogle Scholar
  4. 4.
    Rimnacova L, Husek P, Simek P (2014) A new method for immediate derivatization of hydroxyl groups by fluoroalkyl chloroformates and its application for the determination of sterols and tocopherols in human serum and amniotic fluid by gas chromatography-mass spectrometry. J Chromatogr A 1339:154–167.  https://doi.org/10.1016/j.chroma.2014.03.007 CrossRefPubMedGoogle Scholar
  5. 5.
    Simek P, Heydova A, Jegorov A (1994) High-resolution capillary gas-chromatography and gas-chromatography mass-spectrometry of protein and nonprotein amino-acids, amino-alcohols, and hydroxycarboxylic acids as their tert-butyldimethylsilyl derivatives. J High Resoult Chromatogr 17(3):145–152CrossRefGoogle Scholar
  6. 6.
    Kanani HH, Klapa MI (2007) Data correction strategy for metabolomics analysis using gas chromatography-mass spectrometry. Metab Eng 9(1):39–51.  https://doi.org/10.1016/j.ymben.2006.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Villas-Boas SG, Smart KF, Sivakumaran S, Lane GA (2011) Alkylation or silylation for analysis of amino and non-amino organic acid by GC-MS? Meta 1(1):3–20.  https://doi.org/10.3390/metabo1010003 CrossRefGoogle Scholar
  8. 8.
    Husek P (1997) Urine organic acid profiling by capillary gas chromatography after a simple sample pretreatment. Clin Chem 43(10):1999–2001PubMedGoogle Scholar
  9. 9.
    Husek P, Simek P (2006) Alkyl chloroformates in sample derivatization strategies for GC analysis. Review on a decade use of the reagents as esterifying agents. Curr Pharm Anal 2(1):23–43.  https://doi.org/10.2174/157341206775474007 CrossRefGoogle Scholar
  10. 10.
    Smart KF, Aggio RBM, Van Houtte JR et al (2010) Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nat Protoc 5(10):1709–1729.  https://doi.org/10.1038/nprot.2010.108 CrossRefPubMedGoogle Scholar
  11. 11.
    Wachsmuth CJ, Hahn TA, Oefner PJ et al (2015) Enhanced metabolite profiling using a redesigned atmospheric pressure chemical ionization source for gas chromatography coupled to high-resolution time-of-flight mass spectrometry. Anal Bioanal Chem 407(22):6669–6680.  https://doi.org/10.1007/s00216-015-8824-x CrossRefPubMedGoogle Scholar
  12. 12.
    Husek P, Svagera Z, Hanzlikova D et al (2016) Profiling of urinary amino-carboxylic metabolites by in-situ heptafluorobutyl chloroformate mediated sample preparation and gas chromatography-mass spectrometry. J Chromatogr A 1443:211–232.  https://doi.org/10.1016/j.chroma.2016.03.019 CrossRefPubMedGoogle Scholar
  13. 13.
    Simek P, Husek P, Zahradnickova H (2008) Gas chromatographic-mass spectrometric analysis of biomarkers related to folate and cobalamin status in human serum after dimercaptopropanesulfonate reduction and heptafluorobutyl chloroformate derivatization. Anal Chem 80(15):5776–5782.  https://doi.org/10.1021/ac8003506 CrossRefPubMedGoogle Scholar
  14. 14.
    Simek P, Husek P, Zahradnickova H (2012) Heptafluorobutyl chloroformate-based sample preparation protocol for chiral and nonchiral amino acid analysis by gas chromatography. In: Alterman MA, Hunziker P (eds) Amino acid analysis: methods and protocols, Methods in molecular biology, vol 828, pp 137–152.  https://doi.org/10.1007/978-1-61779-445-2_13 CrossRefGoogle Scholar
  15. 15.
    Husek P, Svagera Z, Hanzlikova D et al (2012) Survey of several methods deproteinizing human plasma before and within the chloroformate-mediated treatment of amino/carboxylic acids quantitated by gas chromatography. J Pharm Biomed Anal 67–68:159–162.  https://doi.org/10.1016/j.jpba.2012.04.027 CrossRefPubMedGoogle Scholar
  16. 16.
    Svagera Z, Hanzlikova D, Simek P et al (2012) Study of disulfide reduction and alkyl chloroformate derivatization of plasma sulfur amino acids using gas chromatography-mass spectrometry. Anal Bioanal Chem 402(9):2953–2963.  https://doi.org/10.1007/s00216-012-5727-y CrossRefPubMedGoogle Scholar
  17. 17.
    Wu YM, Li L (2016) Sample normalization methods in quantitative metabolomics. J Chromatogr A 1430:80–95.  https://doi.org/10.1016/j.chroma.2015.12.007 CrossRefPubMedGoogle Scholar
  18. 18.
    Bouatra S, Aziat F, Mandal R et al (2013) The human urine metabolome. PLoS One 8(9).  https://doi.org/10.1371/journal.pone.0073076
  19. 19.
    Cimlova J, Kruzberska P, Svagera Z et al (2012) In situ derivatization-liquid liquid extraction as a sample preparation strategy for the determination of urinary biomarker prolyl-4-hydroxyproline by liquid chromatography-tandem mass spectrometry. J Mass Spectrom 47(3):294–302.  https://doi.org/10.1002/jms.2952 CrossRefPubMedGoogle Scholar
  20. 20.
    Dettmer K, Stevens AP, Fagerer SR et al (2012) Amino acid analysis in physiological samples by GC-MS with propyl chloroformate derivatization and iTRAQ-LC-MS/MS. In: Alterman MA, Hunziker P (eds) Amino acid analysis: methods and protocols, Methods in molecular biology, vol 828, pp 165–181.  https://doi.org/10.1007/978-1-61779-445-2_15 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Petr Hušek
    • 1
    • 2
  • Zdeněk Švagera
    • 1
  • Dagmar Hanzlíková
    • 1
  • Iva Karlínová
    • 2
  • Lucie Řimnáčová
    • 2
  • Helena Zahradníčková
    • 2
  • Petr Šimek
    • 2
  1. 1.University Hospital OstravaInstitute of Laboratory Diagnostics, Department of BiochemistryOstravaCzech Republic
  2. 2.Czech Academy of Sciences, Biology CentreInstitute of Entomology, Analytical Biochemistry & MetabolomicsČeské BudějoviceCzech Republic

Personalised recommendations