Assessment of External Guide Sequences’ (EGS) Efficiency as Inducers of RNase P-Mediated Cleavage of mRNA Target Molecules

  • Saumya Jani
  • Alexis Jackson
  • Carol Davies-Sala
  • Kevin Chiem
  • Alfonso Soler-Bistué
  • Angeles Zorreguieta
  • Marcelo E. TolmaskyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1737)


RNase P is a ribozyme consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. It was initially identified as the enzyme that mediates cleavage of precursor tRNAs at the 5′-end termini to generate the mature tRNAs. An important characteristic of RNase P is that its specificity depends on the structure rather than the sequence of the RNA substrate. Any RNA species that interacts with an antisense molecule (called external guide sequence, EGS) and forms the appropriate structure can be cleaved by RNase P. This property is the basis for EGS technology, an antisense methodology for inhibiting gene expression by eliciting RNase P-mediated cleavage of a target mRNA molecule. EGS technology is being developed to design therapies against a large variety of diseases. An essential milestone in developing EGSs as therapies is the assessment of the efficiency of antisense molecules to induce cleavage of the target mRNA and evaluate their effect in vivo. Here, we describe simple protocols to test the ability of EGSs to induce cleavage of a target mRNA in vitro and to induce a phenotypic change in growing cells.


Antisense Ribozyme RNase P Antibiotic resistance Aminoglycoside 



This work was supported by Public Health Service grant 2R15AI047115-04 from the National Institute of Allergy and Infectious Diseases, National Institutes of Health. A.J. was funded in part by LA Basin Minority Health and Health Disparities International Research Training Program (MHIRT) 5T37MD001368.


  1. 1.
    McClorey G, Wood MJ (2015) An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr Opin Pharmacol 24:52–58. CrossRefPubMedGoogle Scholar
  2. 2.
    Marwick C (1998) First “antisense” drug will treat CMV retinitis. JAMA 280(10):871CrossRefPubMedGoogle Scholar
  3. 3.
    Ricotta DN, Frishman W (2012) Mipomersen: a safe and effective antisense therapy adjunct to statins in patients with hypercholesterolemia. Cardiol Rev 20(2):90–95. PubMedGoogle Scholar
  4. 4.
    Lim KR, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533–545. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, Norris DA, Bennett CF, Bishop KM (2016) Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 86(10):890–897. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19(1):60–71. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sridharan K, Gogtay NJ (2016) Therapeutic nucleic acids: current clinical status. Br J Clin Pharmacol 82(3):659–672. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11(2):125–140. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rasmussen LC, Sperling-Petersen HU, Mortensen KK (2007) Hitting bacteria at the heart of the central dogma: sequence-specific inhibition. Microb Cell Fact 6:24. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sarno R, Ha H, Weinsetel N, Tolmasky ME (2003) Inhibition of aminoglycoside 6′-N-acetyltransferase type Ib-mediated amikacin resistance by antisense oligodeoxynucleotides. Antimicrob Agents Chemother 47(10):3296–3304CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Davies-Sala C, Soler-Bistue A, Bonomo RA, Zorreguieta A, Tolmasky ME (2015) External guide sequence technology: a path to development of novel antimicrobial therapeutics. Ann N Y Acad Sci 1354:98–110. CrossRefPubMedGoogle Scholar
  12. 12.
    Woodford N, Wareham DW (2009) Tackling antibiotic resistance: a dose of common antisense? J Antimicrob Chemother 63(2):225–229. CrossRefPubMedGoogle Scholar
  13. 13.
    Matzov D, Bashan A, Yonath A (2017) A bright future for antibiotics? Annu Rev Biochem 86:567–583. CrossRefPubMedGoogle Scholar
  14. 14.
    Lundblad EW, Altman S (2010) Inhibition of gene expression by RNase P. N Biotechnol 27(3):212–221. CrossRefPubMedGoogle Scholar
  15. 15.
    Davies Sala C, Soler-Bistue AJ, Korprapun L, Zorreguieta A, Tolmasky ME (2012) Inhibition of cell division induced by external guide sequences (EGS technology) targeting ftsZ. PLoS One 7(10):e47690. CrossRefGoogle Scholar
  16. 16.
    Guerrier-Takada C, Salavati R, Altman S (1997) Phenotypic conversion of drug-resistant bacteria to drug sensitivity. Proc Natl Acad Sci U S A 94(16):8468–8472CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shen N, Ko JH, Xiao G, Wesolowski D, Shan G, Geller B, Izadjoo M, Altman S (2009) Inactivation of expression of several genes in a variety of bacterial species by EGS technology. Proc Natl Acad Sci U S A 106(20):8163–8168. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Soler Bistue AJ, Ha H, Sarno R, Don M, Zorreguieta A, Tolmasky ME (2007) External guide sequences targeting the aac(6′)-Ib mRNA induce inhibition of amikacin resistance. Antimicrob Agents Chemother 51(6):1918–1925. CrossRefPubMedGoogle Scholar
  19. 19.
    Soler Bistue AJ, Martin FA, Vozza N, Ha H, Joaquin JC, Zorreguieta A, Tolmasky ME (2009) Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria. Proc Natl Acad Sci U S A 106(32):13230–13235. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Altman S (2011) Ribonuclease P. Philos Trans R Soc Lond B Biol Sci 366(1580):2936–2941. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Forster AC, Altman S (1990) External guide sequences for an RNA enzyme. Science 249(4970):783–786CrossRefPubMedGoogle Scholar
  22. 22.
    Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35(3 Pt 2):849–857CrossRefPubMedGoogle Scholar
  23. 23.
    Gopalan V, Vioque A, Altman S (2002) RNase P: variations and uses. J Biol Chem 277(9):6759–6762. CrossRefPubMedGoogle Scholar
  24. 24.
    Deleavey GF, Damha MJ (2012) Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol 19(8):937–954. CrossRefPubMedGoogle Scholar
  25. 25.
    Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270(8):1628–1644CrossRefPubMedGoogle Scholar
  26. 26.
    Jackson A, Jani S, Sala CD, Soler-Bistue AJ, Zorreguieta A, Tolmasky ME (2016) Assessment of configurations and chemistries of bridged nucleic acids-containing oligomers as external guide sequences: a methodology for inhibition of expression of antibiotic resistance genes. Biol Methods Protoc 1(1):bpw001. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sawyer AJ, Wesolowski D, Gandotra N, Stojadinovic A, Izadjoo M, Altman S, Kyriakides TR (2013) A peptide-morpholino oligomer conjugate targeting Staphylococcus aureus gyrA mRNA improves healing in an infected mouse cutaneous wound model. Int J Pharm 453(2):651–655. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lin J, Nishino K, Roberts MC, Tolmasky M, Aminov RI, Zhang L (2015) Mechanisms of antibiotic resistance. Front Microbiol 6:34. PubMedPubMedCentralGoogle Scholar
  29. 29.
    Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–12. CrossRefPubMedGoogle Scholar
  30. 30.
    Ramirez MS, Traglia GM, Lin D, Tran T, Tolmasky ME (2014) Plasmid-mediated antibiotic resistance and virulence in Gram-negatives: the Klebsiella pneumoniae paradigm. Microbiol Spectr 2(5):1PubMedPubMedCentralGoogle Scholar
  31. 31.
    Li Y, Guerrier-Takada C, Altman S (1992) Targeted cleavage of mRNA in vitro by RNase P from Escherichia coli. Proc Natl Acad Sci U S A 89(8):3185–3189CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tolmasky ME (2007) Aminoglycoside-modifying enzymes: characteristics, localization, and dissemination. In: Bonomo R, Tolmasky ME (eds) Enzyme-mediated resistance to antibiotics: mechanisms, dissemination, and prospects for inhibition. ASM Press, Washington, DC, pp 35–52CrossRefGoogle Scholar
  33. 33.
    Ramirez MS, Nikolaidis N, Tolmasky ME (2013) Rise and dissemination of aminoglycoside resistance: the aac(6′)-Ib paradigm. Front Microbiol 4:121. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tolmasky ME, Chamorro RM, Crosa JH, Marini PM (1988) Transposon-mediated amikacin resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 32(9):1416–1420CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updat 13(6):151–171. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mingorance J, Rivas G, Velez M, Gomez-Puertas P, Vicente M (2010) Strong FtsZ is with the force: mechanisms to constrict bacteria. Trends Microbiol 18(8):348–356. CrossRefPubMedGoogle Scholar
  37. 37.
    Ukkonen K, Vasala A, Ojamo H, Neubauer P (2011) High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer. Microb Cell Fact 10:107. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Barry AL, Reller LB, Miller GH, Washington JA, Schoenknect FD, Peterson LR, Hare RS, Knapp C (1992) Revision of standards for adjusting the cation content of Mueller-Hinton broth for testing susceptibility of Pseudomonas aeruginosa to aminoglycosides. J Clin Microbiol 30(3):585–589PubMedPubMedCentralGoogle Scholar
  39. 39.
    Abramoff M, Magelhaes P, Ram S (2004) Image processing with Image J. J Biophotonics 11:36–42Google Scholar
  40. 40.
    Copolovici DM, Langel K, Eriste E, Langel U (2014) Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8(3):1972–1994. CrossRefPubMedGoogle Scholar
  41. 41.
    Lehto T, Ezzat K, Wood MJ, El Andaloussi S (2016) Peptides for nucleic acid delivery. Adv Drug Del Rev 106(Pt A):172–182. CrossRefGoogle Scholar
  42. 42.
    Reissmann S (2014) Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 20(10):760–784. CrossRefPubMedGoogle Scholar
  43. 43.
    Lopez C, Arivett BA, Actis LA, Tolmasky ME (2015) Inhibition of AAC(6′)-Ib-mediated resistance to amikacin in Acinetobacter baumannii by an antisense peptide-conjugated 2′,4′-bridged nucleic acid-NC-DNA hybrid oligomer. Antimicrob Agents Chemother 59(9):5798–5803. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Arivett BA, Fiester SE, Ream DC, Centron D, Ramirez MS, Tolmasky ME, Actis LA (2015) Draft genome of the multidrug-resistant Acinetobacter baumannii strain A155 clinical isolate. Genome Announc 3(2):e00212–e00215. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Saumya Jani
    • 1
  • Alexis Jackson
    • 1
    • 2
  • Carol Davies-Sala
    • 1
    • 2
  • Kevin Chiem
    • 1
  • Alfonso Soler-Bistué
    • 1
    • 2
  • Angeles Zorreguieta
    • 2
  • Marcelo E. Tolmasky
    • 1
    Email author
  1. 1.Center for Applied Biotechnology Studies, College of Natural Sciences and MathematicsCalifornia State University FullertonFullertonUSA
  2. 2.Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos AiresAiresArgentina

Personalised recommendations