Hormonal Smartphone Diagnostics

  • P. R. Matías-García
  • J. L. Martinez-HurtadoEmail author
  • A. Beckley
  • M. Schmidmayr
  • V. Seifert-Klauss
Part of the Methods in Molecular Biology book series (MIMB, volume 1735)


Mobile point-of-care diagnostics are paramount for the provision of healthcare. Hormonal diagnostics are powerful tools to monitor timely changes in human physiology. Hormone concentrations in serum directly correlate with urine excretions with minor time delays. Therefore, rapid tests for hormones in urine have been widely used for decades as means of early diagnostics, particularly in lateral flow immunoassay formats. However, the challenge of reading and interpreting these binary tests remains. Here we present a method for utilizing mobile technologies to quantitatively read and interpret hormonal test strips. The method demonstrates the detection of a urinary by-product of progesterone, pregnanediol glucuronide (PdG), and its relation to ovulation and the fertility cycle.

Key words

Smartphone Diagnostics Mobile Medical Application Quantitative assays Hormones Progesterone PdG Ovulation 



The authors acknowledge MFB Fertility Inc. for providing the PdG lateral flow test strips.


  1. 1.
    Nussey SS, Whitehead SA (2001) Endocrinology: an integrated approach, 1st edn. CRC Press, Boca Raton, FL. (14 May 2001). ISBN-10: 1859962521CrossRefGoogle Scholar
  2. 2.
    Allen AM, McRae-Clark AL, Carlson S, Saladin ME, Gray KM, Wetherington CL et al (2016) Determining menstrual phase in human biobehavioral research: a review with recommendations. Exp Clin Psychopharmacol 24:1–11CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Balasch J (2003) Sex steroids and bone: current perspectives. Hum Reprod Update 9:207–222CrossRefPubMedGoogle Scholar
  4. 4.
    Seifert-Klauss V (2012) Progesteron und Knochen. Gynäkologische Endokrinologie 10(1):37–44CrossRefGoogle Scholar
  5. 5.
    Seifert-Klauss V, Schmidmayr M, Hobmaier E, Wimmer T (2012) Progesterone and bone: a closer link than previously realized. Climacteric 15(Suppl 1):26–31CrossRefPubMedGoogle Scholar
  6. 6.
    Seifert-Klauss V, Prior JC (2010) Progesterone and bone: actions promoting bone health in women. J Osteoporos 2010:845180. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sathish V, Martin YN, Prakash YS (2015) Sex steroid signaling: implications for lung diseases. Pharmacol Ther 150:94–108CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gonzalez-Arenas A, Agramonte-Hevia J (2012) Sex steroid hormone effects in normal and pathologic conditions in lung physiology. Mini Rev Med Chem 12:1055–1062CrossRefPubMedGoogle Scholar
  9. 9.
    Cabrera-Munoz E, Hernandez-Hernandez OT, Camacho-Arroyo I (2012) Role of estradiol and progesterone in HIV susceptibility and disease progression. Mini Rev Med Chem 12:1049–1054CrossRefPubMedGoogle Scholar
  10. 10.
    Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F et al (2014) Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 113:6–39CrossRefPubMedGoogle Scholar
  11. 11.
    Baulieu E, Schumacher M (2000) Progesterone as a neuroactive neurosteroid, with special reference to the effect of progesterone on myelination. Steroids 65:605–612CrossRefPubMedGoogle Scholar
  12. 12.
    Wagner CK (2006) The many faces of progesterone: a role in adult and developing male brain. Front Neuroendocrinol 27:340–359CrossRefPubMedGoogle Scholar
  13. 13.
    Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE et al (2008) Progesterone receptors: form and function in brain. Front Neuroendocrinol 29:313–339CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Filicori M (2015) Clinical roles and applications of progesterone in reproductive medicine: an overview. Acta Obstet Gynecol Scand 94(Suppl 161):3–7CrossRefPubMedGoogle Scholar
  15. 15.
    Blackwell LF, Brown JB, Cooke D (1998) Definition of the potentially fertile period from urinary steroid excretion rates. Part II. A threshold value for pregnanediol glucuronide as a marker for the end of the potentially fertile period in the human menstrual cycle. Steroids 63:5–13CrossRefPubMedGoogle Scholar
  16. 16.
    Mesen TB, Young SL (2015) Progesterone and the luteal phase a requisite to reproduction. Obstet Gynecol Clin North Am 42:135–151CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Christensen A, Bentley GE, Cabrera R, Ortega HH, Perfito N, Wu TJ et al (2012) Hormonal regulation of female reproduction. Horm Metab Res 44:587–591CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Macias H, Hinck L (2012) Mammary gland development. Wiley Interdiscip Rev Dev Biol 1:533–557CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Williams NI, Reed JL, Leidy HJ, Legro RS, De Souza MJ (2010) Estrogen and progesterone exposure is reduced in response to energy deficiency in women aged 25-40 years. Hum Reprod 25:2328–2339CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Maggio L, Rouse DJ (2014) Progesterone. Clin Obstet Gynecol 57:547–556CrossRefPubMedGoogle Scholar
  21. 21.
    Stanczyk FZ, Gentzschein E, Ary BA, Kojima T, Ziogas A, Lobo RA (1997) Urinary progesterone and pregnanediol. Use for monitoring progesterone treatment. J Reprod Med 42:216–222PubMedGoogle Scholar
  22. 22.
    Collins WP (1991) The evolution of reference methods to monitor ovulation. Am J Obstet Gynecol 165:1994–1996CrossRefPubMedGoogle Scholar
  23. 23.
    Brown JB (2011) Types of ovarian activity in women and their significance: the continuum (a reinterpretation of early findings). Hum Reprod Update 17(2):141–158CrossRefPubMedGoogle Scholar
  24. 24.
    Cekan SZ, Beksac MS, Wang E, Shi S, Masironi B, Landgren BM et al (1986) The prediction and/or detection of ovulation by means of urinary steroid assays. Contraception 33:327–345CrossRefPubMedGoogle Scholar
  25. 25.
    Roos J, Johnson S, Weddell S, Godehardt E, Schiffner J, Freundl G et al (2015) Monitoring the menstrual cycle: comparison of urinary and serum reproductive hormones referenced to true ovulation. Eur J Contracept Reprod Health Care 20:438–450CrossRefPubMedGoogle Scholar
  26. 26.
    Branch CM, Collins PO, Collins WP (1982) Ovulation prediction: changes in the concentrations of urinary estrone-3-glucuronide, estradiol-17 beta-glucuronide and estriol-16 alpha-glucuronide during conceptional cycles. J Steroid Biochem 16:345–347CrossRefPubMedGoogle Scholar
  27. 27.
    Blackwell LF, Vigil P, Alliende ME, Brown S, Festin M, Cooke DG (2016) Monitoring of ovarian activity by measurement of urinary excretion rates using the ovarian monitor, part IV: the relationship of the pregnanediol glucuronide threshold to basal body temperature and cervical mucus as markers for the beginning of the post-ovulatory infertile period. Hum Reprod 31:445–453PubMedGoogle Scholar
  28. 28.
    Johnson S, Weddell S, Godbert S, Freundl G, Roos J, Gnoth C (2015) Development of the first urinary reproductive hormone ranges referenced to independently determined ovulation day. Clin Chem Lab Med 53:1099–1108PubMedGoogle Scholar
  29. 29.
    O'Connor KA, Ferrell R, Brindle E, Trumble B, Shofer J, Holman DJ et al (2009) Progesterone and ovulation across stages of the transition to menopause. Menopause 16:1178–1187CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Blackwell LF, Vigil P, Cooke DG, d'Arcangues C, Brown JB (2013) Monitoring of ovarian activity by daily measurement of urinary excretion rates of oestrone glucuronide and pregnanediol glucuronide using the ovarian monitor, part III: variability of normal menstrual cycle profiles. Hum Reprod 28:3306–3315CrossRefPubMedGoogle Scholar
  31. 31.
    Ecochard R, Leiva R, Bouchard T, Boehringer H, Direito A, Mariani A et al (2013) Use of urinary pregnanediol 3-glucuronide to confirm ovulation. Steroids 78:1035–1040CrossRefPubMedGoogle Scholar
  32. 32.
    Blackwell LF, Vigil P, Gross B, d'Arcangues C, Cooke DG, Brown JB (2012) Monitoring of ovarian activity by measurement of urinary excretion rates of estrone glucuronide and pregnanediol glucuronide using the ovarian monitor, part II: reliability of home testing. Hum Reprod 27:550–557CrossRefPubMedGoogle Scholar
  33. 33.
    Blackwell LF, Brown JB, Vigil P, Gross B, Sufi S, d'Arcangues C (2003) Hormonal monitoring of ovarian activity using the ovarian monitor, part I. Validation of home and laboratory results obtained during ovulatory cycles by comparison with radioimmunoassay. Steroids 68:465–476CrossRefPubMedGoogle Scholar
  34. 34.
    Bouchard TP, Genuis SJ (2011) Personal fertility monitors for contraception. CMAJ 183:73–76CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yetisen AK, Martinez-Hurtado JL, da Cruz Vasconcellos F, Simsekler MC, Akram MS, Lowe CR (2014) The regulation of mobile medical applications. Lab Chip 14:833–840CrossRefPubMedGoogle Scholar
  36. 36.
    Martinez-Hurtado JL, Yetisen AK, Yun SH (2017) Multiplex smartphone diagnostics. Methods Mol Biol 1546:295–302CrossRefPubMedGoogle Scholar
  37. 37.
    Yetisen AK, Martinez-Hurtado JL, Garcia-Melendrez A, Vasconcellos FC, Lowe CR (2014) A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sensor Actuat B-Chem 196:156–160CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • P. R. Matías-García
    • 1
  • J. L. Martinez-Hurtado
    • 2
    Email author
  • A. Beckley
    • 3
  • M. Schmidmayr
    • 4
  • V. Seifert-Klauss
    • 4
  1. 1.Institute of Medical Informatics, Biometry and Epidemiology (IBE)Ludwig-Maximilians-Universität MünchenMunichGermany
  2. 2.TUM IncubatorTechnische Universität MünchenMunichGermany
  3. 3.MFB Fertility Inc.BoulderUSA
  4. 4.Frauenklinik und PoliklinikTechnische Universität MünchenMunichGermany

Personalised recommendations