Serial Dilution-Based Growth Curves and Growth Curve Synchronization for High-Resolution Time Series of Bacterial Biofilm Growth

Part of the Methods in Molecular Biology book series (MIMB, volume 1734)


The ability to form stable surface-attached communities called biofilms is of paramount importance to both beneficial and harmful interactions between microbes and microbial, plant or animal partners. Assessment of biofilm formation ability is often performed by growing the organisms in microtiter plate wells and staining the well-attached material, a method whose use for time-course analysis is limited by its destructive nature. Here we combine a serial dilution-based biofilm growth curve method with online monitoring of planktonic growth and a serially diluted growth curve synchronization algorithm to reconstruct the time-course of planktonic and biofilm growth. As demonstrated here with the rhizosphere bacterium Pseudomonas putida, the method allows accurate determination of the growth rate and doubling time, a robust depiction of the biofilm formation and dispersal dynamics and assessment of the biofilm development defects in mutant strains.

Key words

Biofilm development Bacterial growth Bacterial physiology Bacteria–host interactions Computing approaches 



I acknowledge Carlos Medina (CABD, Universidad Pablo de Olavide, Sevilla) for his patience with the preparation of this manuscript. The work in my lab is cofunded by the Spanish Ministerio de Economía y Competitividad and the European Regional Development Fund (Grant number BIO2013-42073-P).

Supplementary material

417599_1_En_13_MOESM1_ESM.xlsx (1.7 mb)
Time-shifted growth curves template.xlsx (XLSX 1731 kb)


  1. 1.
    Costerton JW, Lewandowski Z, Caldwell DE et al (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefPubMedGoogle Scholar
  2. 2.
    Davey ME, O'Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 285:1318–1322CrossRefGoogle Scholar
  4. 4.
    Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422CrossRefPubMedGoogle Scholar
  5. 5.
    Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 64:153–166CrossRefPubMedGoogle Scholar
  6. 6.
    Filoche S, Wong L, Sissons CH (2010) Oral biofilms: emerging concepts in microbial ecology. J Dent Res 89:8–18CrossRefPubMedGoogle Scholar
  7. 7.
    Fàbrega A, Vila J (2013) Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 26:308–341CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sharma G, Sharma S, Sharma P et al (2016) Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 121:309–319CrossRefPubMedGoogle Scholar
  9. 9.
    O’Toole GA, Pratt LA, Watnick PI et al (1999) Genetic approaches to study of biofilms. Methods Enzymol 310:91–109CrossRefPubMedGoogle Scholar
  10. 10.
    Merritt JH, Kadouri DE, O’Toole GA (2011) Growing and analyzing static biofilms. Curr Protoc Microbiol 22:1B.1.1–1B.1.18CrossRefGoogle Scholar
  11. 11.
    van Ditmarsch D, Xavier JB (2011) High-resolution time series of Pseudomonas aeruginosa gene expression and rhamnolipid secretion through growth curve synchronization. BMC Microbiol 11:140CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    López-Sánchez A, Jiménez-Fernández A, Calero P et al (2013) New methods for the isolation and characterization of biofilm-persistent mutants in Pseudomonas putida. Environ Microbiol Rep 5:679–685PubMedGoogle Scholar
  13. 13.
    Jiménez-Fernández A, López-Sánchez A, Calero P, Govantes F (2015) The c-di-GMP phosphodiesterase BifA regulates biofilm development in Pseudomonas putida. Environ Microbiol Rep 7:78–84CrossRefPubMedGoogle Scholar
  14. 14.
    López-Sánchez A, Leal-Morales A, Jiménez-Díaz L, et al (2016) Biofilm formation-defective mutants in Pseudomonas putida.FEMS Microbiol Lett 363. pii: fnw127Google Scholar
  15. 15.
    Jiménez-Fernández A, López-Sánchez A, Jiménez-Díaz L et al (2016) Complex interplay between FleQ, cyclic diguanylate and multiple σ factors coordinately regulates flagellar motility and biofilm development in Pseudomonas putida. PLoS One 11:e0163142CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Govantes F (2017) Time-shifted growth curves template.xlsx. http://XXXXXX. Accessed XX XXX 2017Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Centro Andaluz de Biología del Desarrollo, Universidad Pablo de OlavideConsejo Superior de Investigaciones Científicas and Junta de AndalucíaSevilleSpain

Personalised recommendations