AMPK pp 551-563 | Cite as

Evaluating the Role of Host AMPK in Leishmania Burden

  • Diana Moreira
  • Jérôme Estaquier
  • Anabela Cordeiro-da-Silva
  • Ricardo Silvestre
Part of the Methods in Molecular Biology book series (MIMB, volume 1732)


The study of host AMP-activated protein kinase (AMPK) activation during Leishmania infection imposes distinct types of techniques to measure protein expression and activation, as well as to quantify, at transcription and translational levels, its downstream targets. The investigation of host AMPK protein modulation during Leishmania infection should primarily be assessed during in vitro infections using as a host murine bone marrow-derived macrophages (BMMos). The infection outcome is assessed measuring the percentage of infected cells in the context of BMMos. To evaluate AMPK activity during infection, the expression of AMPK phosphorylated at Thr172 as well as the transcription and translational levels of its downstream targets are evaluated by quantitative PCR and immunoblotting. The modulation of AMPK activity in vivo is determined specifically in sorted splenic macrophages harboring Leishmania parasites recovered from infected mice using fluorescent-labeled parasites in the infectious inocolum. The modulation of AMPK activity was assessed by AMPK activators and inhibitors and also using AMPK, SIRT1, or LKB1 KO mice models. The infection outcome in BMMos and in vivo was further determined using these two different approaches. To finally understand the metabolic impact of AMPK during infection, in vitro metabolic assays in infected BMMos were measured in the bioenergetic profile using an extracellular flux analyzer.

Key words

Leishmania AMPK Bioenergetic profile Extracellular flux analyzer AMPK activators and inhibitors SIRT1 Mitochondria Cell metabolism Macrophages 



This work was supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013) and the Fundação para a Ciência e Tecnologia (FCT) (contract IF/00021/2014 to R.S.), by FEDER funds through the Operational Competitiveness Programme (COMPETE), and by national funds through FCT (Fundação para a Ciência e a Tecnologia) under the project FCOMP-01-0124-FEDER-011054 (PTDC/SAU-FCF/100749/2008) and PTDC/BIA-MIC/118644/2010. The research leading to these results has also received funding from the European community’s Seventh Framework Programme under grant agreement No.602773 to JE and ACS (Project KINDRED). DM was supported by SFRH/BD/91543/2012. JE thanks the Canada Research Chair program for their supports.


  1. 1.
    Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet 366:1561–1577CrossRefPubMedGoogle Scholar
  2. 2.
    Estaquier J, Vallette F, Vayssiere JL, Mignotte B (2012) The mitochondrial pathways of apoptosis. Adv Exp Med Biol 942:157–183CrossRefPubMedGoogle Scholar
  3. 3.
    Rodrigues V, Cordeiro-da-Silva A, Laforge M, Ouaissi A, Silvestre R, Estaquier J (2012) Modulation of mammalian apoptotic pathways by intracellular protozoan parasites. Cell Microbiol 14:325–333CrossRefPubMedGoogle Scholar
  4. 4.
    Rodrigues V, Cordeiro-da-Silva A, Laforge M, Ouaissi A, Akharid K, Silvestre R, Estaquier J (2014) Impairment of T cell function in parasitic infections. PLoS Negl Trop Dis 8:e2567CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Manzanero S (2012) Generation of mouse bone marrow-derived macrophages. Methods Mol Biol 844:177–181CrossRefPubMedGoogle Scholar
  6. 6.
    Resende M, Moreira D, Augusto J, Cunha J, Neves B, Cruz MT, Estaquier J, Cordeiro-da-Silva A, Silvestre R (2013) Leishmania-infected MHC class II high dendritic cells polarize CD4+ T cells toward a nonprotective T-bet+ IFN-gamma+ IL-10+ phenotype. J Immunol 191:262–273CrossRefPubMedGoogle Scholar
  7. 7.
    Moreira D, Rodrigues V, Abengozar M, Rivas L, Rial E, Laforge M, Li X, Foretz M, Viollet B, Estaquier J, Cordeiro da Silva A, Silvestre R (2015) Leishmania infantum modulates host macrophage mitochondrial metabolism by hijacking the SIRT1-AMPK axis. PLoS Pathog 11:e1004684CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bulusu V, Thakur SS, Venkatachala R, Balaram H (2011) Mechanism of growth inhibition of intraerythrocytic stages of Plasmodium falciparum by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Mol Biochem Parasitol 177:1–11CrossRefPubMedGoogle Scholar
  9. 9.
    Kondratowicz AS, Hunt CL, Davey RA, Cherry S, Maury WJ (2013) AMP-activated protein kinase is required for the macropinocytic internalization of ebolavirus. J Virol 87:746–755CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V (2008) Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 14:661–673CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y, Lan F, Walsh K, Wierzbicki M, Verbeuren TJ, Cohen RA, Zang M (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283:20015–20026CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lan F, Cacicedo JM, Ruderman N, Ido Y (2008) SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 283:27628–27635CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cunha J, Carrillo E, Sanchez C, Cruz I, Moreno J, Cordeiro-da-Silva A (2013) Characterization of the biology and infectivity of Leishmania infantum viscerotropic and dermotropic strains isolated from HIV+ and HIV- patients in the murine model of visceral leishmaniasis. Parasit Vectors 6:122CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    van Eys GJ, Schoone GJ, Kroon NC, Ebeling SB (1992) Sequence analysis of small subunit ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Mol Biochem Parasitol 51:133–142CrossRefPubMedGoogle Scholar
  16. 16.
    Miro G, Oliva G, Cruz I, Canavate C, Mortarino M, Vischer C, Bianciardi P (2009) Multicentric, controlled clinical study to evaluate effectiveness and safety of miltefosine and allopurinol for canine leishmaniosis. Vet Dermatol 20:397–404CrossRefPubMedGoogle Scholar
  17. 17.
    Cruz I, Chicharro C, Nieto J, Bailo B, Canavate C, Figueras MC, Alvar J (2006) Comparison of new diagnostic tools for management of pediatric Mediterranean visceral leishmaniasis. J Clin Microbiol 44:2343–2347CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rodrigues V, Laforge M, Campillo-Gimenez L, Soundaramourty C, Correia-de-Oliveira A, Dinis-Oliveira RJ, Ouaissi A, Cordeiro-da-Silva A, Silvestre R, Estaquier J (2014) Abortive T follicular helper development is associated with a defective humoral response in Leishmania infantum-infected macaques. PLoS Pathog 10:e1004096CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Silvestre R, Cordeiro-Da-Silva A, Santarem N, Vergnes B, Sereno D, Ouaissi A (2007) SIR2-deficient Leishmania infantum induces a defined IFN-gamma/IL-10 pattern that correlates with protection. J Immunol 179:3161–3170CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Diana Moreira
    • 1
    • 4
    • 5
  • Jérôme Estaquier
    • 2
    • 3
  • Anabela Cordeiro-da-Silva
    • 1
  • Ricardo Silvestre
    • 4
    • 5
  1. 1.Parasite Disease Group, IBMC-Instituto de Biologia Molecular e Celular; Instituto de Investigação e Inovação em Saúde, and Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
  2. 2.CNRS FR 3636Université Paris DescartesParisFrance
  3. 3.Centre de Recherche du CHU de QuébecUniversité LavalLavalCanada
  4. 4.Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
  5. 5.ICVS/3Bs-PT Government Associate LaboratoryGuimarãesPortugal

Personalised recommendations