Advertisement

AMPK pp 413-431 | Cite as

Manipulation and Measurement of AMPK Activity in Pancreatic Islets

  • Aida Martinez-Sanchez
  • Marie-Sophie Nguyen-Tu
  • Isabelle Leclerc
  • Guy A. Rutter
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1732)

Abstract

The role of the energy sensor AMPK-activated protein kinase (AMPK) in the insulin-secreting β-cell remains unclear and a subject of intense research. With this chapter, we aim to provide a detailed description of the methods that our group routinely applies to the study of AMPK function in mouse and human pancreatic islets. Thus, we provide detailed protocols to isolate and/or culture mouse and human islets, to modulate and measure AMPK activity in isolated islets, and to evaluate its impact on islet function.

Key words

Mouse and human islets Islet isolation AMPK activity Insulin secretion Pharmacological AMPK activators 

References

  1. 1.
    Organization WH (2016) Global report on diabetes. GenevaGoogle Scholar
  2. 2.
    Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, Day EA, Salt IP, Steinberg GR, Hardie DG (2016) The Na+/GLUCOSE cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 65(9):2784–2794.  https://doi.org/10.2337/db16-0058 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Coughlan KA, Valentine RJ, Ruderman NB, Saha AK (2014) AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes 7:241–253.  https://doi.org/10.2147/DMSO.S43731 PubMedPubMedCentralGoogle Scholar
  4. 4.
    Salt IP, Johnson G, Ashcroft SJ, Hardie DG (1998) AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release. Biochem J 335(Pt 3):533–539CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sun G, Tarasov AI, McGinty J, McDonald A, da Silva Xavier G, Gorman T, Marley A, French PM, Parker H, Gribble F, Reimann F, Prendiville O, Carzaniga R, Viollet B, Leclerc I, Rutter GA (2010) Ablation of AMP-activated protein kinase alpha1 and alpha2 from mouse pancreatic beta cells and RIP2.Cre neurons suppresses insulin release in vivo. Diabetologia 53(5):924–936.  https://doi.org/10.1007/s00125-010-1692-1 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fu A, Eberhard CE, Screaton RA (2013) Role of AMPK in pancreatic beta cell function. Mol Cell Endocrinol 366(2):127–134.  https://doi.org/10.1016/j.mce.2012.06.020 CrossRefPubMedGoogle Scholar
  7. 7.
    Kone M, Pullen TJ, Sun G, Ibberson M, Martinez-Sanchez A, Sayers S, Nguyen-Tu MS, Kantor C, Swisa A, Dor Y, Gorman T, Ferrer J, Thorens B, Reimann F, Gribble F, McGinty JA, Chen L, French PM, Birzele F, Hildebrandt T, Uphues I, Rutter GA (2014) LKB1 and AMPK differentially regulate pancreatic beta-cell identity. FASEB J 28(11):4972–4985.  https://doi.org/10.1096/fj.14-257667 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yavari A, Stocker CJ, Ghaffari S, Wargent ET, Steeples V, Czibik G, Pinter K, Bellahcene M, Woods A, Martinez de Morentin PB, Cansell C, Lam BY, Chuster A, Petkevicius K, Nguyen-Tu MS, Martinez-Sanchez A, Pullen TJ, Oliver PL, Stockenhuber A, Nguyen C, Lazdam M, O'Dowd JF, Harikumar P, Toth M, Beall C, Kyriakou T, Parnis J, Sarma D, Katritsis G, Wortmann DD, Harper AR, Brown LA, Willows R, Gandra S, Poncio V, de Oliveira Figueiredo MJ, Qi NR, Peirson SN, McCrimmon RJ, Gereben B, Tretter L, Fekete C, Redwood C, Yeo GS, Heisler LK, Rutter GA, Smith MA, Withers DJ, Carling D, Sternick EB, Arch JR, Cawthorne MA, Watkins H, Ashrafian H (2016) Chronic activation of gamma2 AMPK induces obesity and reduces beta cell function. Cell Metab 23(5):821–836.  https://doi.org/10.1016/j.cmet.2016.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hong SP, Leiper FC, Woods A, Carling D, Carlson M (2003) Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A 100(15):8839–8843.  https://doi.org/10.1073/pnas.1533136100 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hardie DG, Schaffer BE, Brunet A (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 26(3):190–201.  https://doi.org/10.1016/j.tcb.2015.10.013 CrossRefPubMedGoogle Scholar
  11. 11.
    Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229(2):558–565CrossRefPubMedGoogle Scholar
  12. 12.
    da Silva Xavier G, Leclerc I, Varadi A, Tsuboi T, Moule SK, Rutter GA (2003) Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem J 371(Pt 3):761–774.  https://doi.org/10.1042/BJ20021812 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hasenour CM, Ridley DE, Hughey CC, James FD, Donahue EP, Shearer J, Viollet B, Foretz M, Wasserman DH (2014) 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo. J Biol Chem 289(9):5950–5959.  https://doi.org/10.1074/jbc.M113.528232 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rao E, Zhang Y, Li Q, Hao J, Egilmez NK, Suttles J, Li B (2016) AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget 7(23):33783–33795.  https://doi.org/10.18632/oncotarget.9277 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Liu X, Chhipa RR, Pooya S, Wortman M, Yachyshin S, Chow LM, Kumar A, Zhou X, Sun Y, Quinn B, McPherson C, Warnick RE, Kendler A, Giri S, Poels J, Norga K, Viollet B, Grabowski GA, Dasgupta B (2014) Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci U S A 111(4):E435–E444.  https://doi.org/10.1073/pnas.1311121111 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gómez-Galeno JE, Dang Q, Nguyen TH, Boyer SH, Grote MP, Sun Z, Chen M, Craigo WA, van Poelje PD, MacKenna DA, Cable EE, Rolzin PA, Finn PD, Chi B, Linemeyer DL, Hecker SJ, Erion MD (2010) A potent and selective AMPK activator that inhibits de novo lipogenesis. ACS Med Chem Lett 1(9):478–482.  https://doi.org/10.1021/ml100143q CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S, Giordanetto F, Martin SR, Carling D, Gamblin SJ (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017.  https://doi.org/10.1038/ncomms4017 PubMedPubMedCentralGoogle Scholar
  18. 18.
    Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408(3):297–315.  https://doi.org/10.1042/BJ20070797 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Martinez-Sanchez A, Nguyen-Tu MS, Rutter GA (2015) DICER inactivation identifies pancreatic beta-cell “disallowed” genes targeted by microRNAs. Mol Endocrinol 29(7):1067–1079.  https://doi.org/10.1210/me.2015-1059 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Carter JD, Dula SB, Corbin KL, Wu R, Nunemaker CS (2009) A practical guide to rodent islet isolation and assessment. Biol Proced Online 11:3–31.  https://doi.org/10.1007/s12575-009-9021-0 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ravier MA, Rutter GA (2010) Isolation and culture of mouse pancreatic islets for ex vivo imaging studies with trappable or recombinant fluorescent probes. Methods Mol Biol 633:171–184.  https://doi.org/10.1007/978-1-59745-019-5_12 CrossRefPubMedGoogle Scholar
  22. 22.
    Hunter Roger W, Foretz M, Bultot L, Fullerton Morgan D, Deak M, Ross Fiona A, Hawley Simon A, Shpiro N, Viollet B, Barron D, Kemp Bruce E, Steinberg Gregory R, Hardie DG, Sakamoto K (2014) Mechanism of action of compound-13: an α1-selective small molecule activator of AMPK. Chem Biol 21(7):866–879.  https://doi.org/10.1016/j.chembiol.2014.05.014 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Woods A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferré P, Foufelle F, Carling D (2000) Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol 20(18):6704–6711CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Leclerc I, Woltersdorf WW, da Silva Xavier G, Rowe RL, Cross SE, Korbutt GS, Rajotte RV, Smith R, Rutter GA (2004) Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab 286(6):E1023–E1031.  https://doi.org/10.1152/ajpendo.00532.2003 CrossRefPubMedGoogle Scholar
  25. 25.
    Davies SP, Carling D, Hardie DG (1989) Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem 186(1–2):123–128CrossRefPubMedGoogle Scholar
  26. 26.
    da Silva Xavier G, Leclerc I, Salt IP, Doiron B, Hardie DG, Kahn A, Rutter GA (2000) Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression. Proc Natl Acad Sci U S A 97(8):4023–4028CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Scott JW, Norman DG, Hawley SA, Kontogiannis L, Hardie DG (2002) Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J Mol Biol 317(2):309–323.  https://doi.org/10.1006/jmbi.2001.5316 CrossRefPubMedGoogle Scholar
  28. 28.
    Hardie DG, Ross FA, Hawley SA (2012) AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol 19(10):1222–1236.  https://doi.org/10.1016/j.chembiol.2012.08.019 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9):1016–1023.  https://doi.org/10.1038/ncb2329 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Carling D, Zammit VA, Hardie DG (1987) A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 223(2):217–222CrossRefPubMedGoogle Scholar
  31. 31.
    Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30(2):214–226.  https://doi.org/10.1016/j.molcel.2008.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Meares GP, Hughes KJ, Naatz A, Papa FR, Urano F, Hansen PA, Benveniste EN, Corbett JA (2011) IRE1-dependent activation of AMPK in response to nitric oxide. Mol Cell Biol 31(21):4286–4297.  https://doi.org/10.1128/MCB.05668-11 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mahmood T, Yang PC (2012) Western blot: technique, theory, and trouble shooting. N Am J Med Sci 4(9):429–434.  https://doi.org/10.4103/1947-2714.100998 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Degorce F, Card A, Soh S, Trinquet E, Knapik GP, Xie B (2009) HTRF: a technology tailored for drug discovery - a review of theoretical aspects and recent applications. Curr Chem Genomics 3:22–32.  https://doi.org/10.2174/1875397300903010022 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vasir B, Aiello LP, Yoon KH, Quickel RR, Bonner-Weir S, Weir GC (1998) Hypoxia induces vascular endothelial growth factor gene and protein expression in cultured rat islet cells. Diabetes 47(12):1894–1903CrossRefPubMedGoogle Scholar
  36. 36.
    Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen ZP, Witters LA (1999) Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 24(1):22–25CrossRefPubMedGoogle Scholar
  37. 37.
    Diraison F, Parton L, Ferré P, Foufelle F, Briscoe CP, Leclerc I, Rutter GA (2004) Over-expression of sterol-regulatory-element-binding protein-1c (SREBP1c) in rat pancreatic islets induces lipogenesis and decreases glucose-stimulated insulin release: modulation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Biochem J 378(Pt 3):769–778.  https://doi.org/10.1042/BJ20031277 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chennell G, Willows RJ, Warren SC, Carling D, French PM, Dunsby C, Sardini A (2016) Imaging of metabolic status in 3D cultures with an improved AMPK FRET biosensor for FLIM. Sensors (Basel) 16(8).  https://doi.org/10.3390/s16081312

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and MetabolismImperial College LondonLondonUK

Personalised recommendations