Advertisement

Sphingolipid Analysis in Clinical Research

  • Bo Burla
  • Sneha Muralidharan
  • Markus R. Wenk
  • Federico TortaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1730)

Abstract

Sphingolipids are the most diverse class of lipids due to the numerous variations in their structural components. This diversity is also reflected in their extremely different functions. Sphingolipids are not only constituents of cell membranes but have also emerged as key signaling molecules involved in a variety of cellular functions, such as cell growth and differentiation, proliferation, and apoptotic cell death. Lipidomic analyses in clinical research have identified pathways and products of sphingolipid metabolism that are altered in several human pathologies. In this article, we describe how to properly design a lipidomic experiment in clinical research, how to handle plasma and serum samples for this purpose, and how to measure sphingolipids using liquid chromatography-mass spectrometry.

Key words

Sphingolipids Mass spectrometry Lipidomics Sphingolipidomics Ceramide Sphingomyelin Glucosylceramide Sphingosine-1-phosphate Clinical mass spectrometry Quality control 

References

  1. 1.
    Merrill AH (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111(10):6387–6422. https://doi.org/10.1021/cr2002917CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Iqbal J, Walsh MT, Hammad SM et al (2017) Sphingolipids and lipoproteins in health and metabolic disorders. Trends Endocrinol Metab. https://doi.org/10.1016/j.tem.2017.03.005
  3. 3.
    Hyötyläinen T, Ahonen L, Poho P et al (2017) Lipidomics in biomedical research-practical considerations. Biochim Biophys Acta. https://doi.org/10.1016/j.bbalip.2017.04.002
  4. 4.
    Zhao Y-Y, Wu S-P, Liu S et al (2014) Ultra-performance liquid chromatography-mass spectrometry as a sensitive and powerful technology in lipidomic applications. Chem Biol Interact 220:181–192. https://doi.org/10.1016/j.cbi.2014.06.029CrossRefPubMedGoogle Scholar
  5. 5.
    Sillence DJ, Platt FM (2003) Storage diseases: new insights into sphingolipid functions. Trends Cell Biol 13(4):195–203. https://doi.org/10.1016/S0962-8924(03)00033-3CrossRefPubMedGoogle Scholar
  6. 6.
    Aburasayn H, Batran RA, Ussher JR (2016) Targeting ceramide metabolism in obesity. Am J Physiol Endocrinol Metab 311(2):E423–E435. https://doi.org/10.1152/ajpendo.00133.2016CrossRefPubMedGoogle Scholar
  7. 7.
    Fucho R, Casals N, Serra D et al (2017) Ceramides and mitochondrial fatty acid oxidation in obesity. FASEB J 31(4):1263–1272. https://doi.org/10.1096/fj.201601156RCrossRefPubMedGoogle Scholar
  8. 8.
    Laaksonen R, Ekroos K, Sysi-Aho M et al (2016) Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J. https://doi.org/10.1093/eurheartj/ehw148
  9. 9.
    Penno A, Reilly MM, Houlden H et al (2010) Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J Biol Chem 285(15):11178–11187. https://doi.org/10.1074/jbc.M109.092973CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zuellig RA, Hornemann T, Othman A et al (2014) Deoxysphingolipids, novel biomarkers for type 2 diabetes, are cytotoxic for insulin-producing cells. Diabetes 63(4):1326–1339. https://doi.org/10.2337/db13-1042CrossRefPubMedGoogle Scholar
  11. 11.
    Shayman JA (2016) Targeting glycosphingolipid metabolism to treat kidney disease. Nephron 134(1):37–42. https://doi.org/10.1159/000444926CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kunkel GT, Maceyka M, Milstien S et al (2013) Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 12(9):688–702. https://doi.org/10.1038/nrd4099CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Narayanaswamy P, Shinde SA, Sulc R et al (2014) Lipidomic ‘deep profiling’: an enhanced workflow to reveal new molecular species of signaling lipids. Anal Chem 86(6):3043–3047. https://doi.org/10.1021/ac4039652CrossRefPubMedGoogle Scholar
  14. 14.
    Blanksby SJ, Mitchell TW (2010) Advances in mass spectrometry for lipidomics. Annu Rev Anal Chem (Palo Alto, Calif) 3:433–465. https://doi.org/10.1146/annurev.anchem.111808.073705CrossRefGoogle Scholar
  15. 15.
    Sullards MC, Liu Y, Chen Y et al (2011) Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Biochim Biophys Acta 1811(11):838–853. https://doi.org/10.1016/j.bbalip.2011.06.027CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang J-R, Zhang H, Yau LF et al (2014) Improved sphingolipidomic approach based on ultra-high performance liquid chromatography and multiple mass spectrometries with application to cellular neurotoxicity. Anal Chem 86(12):5688–5696. https://doi.org/10.1021/ac5009964CrossRefPubMedGoogle Scholar
  17. 17.
    Alshehry ZH, Barlow CK, Weir JM et al (2015) An efficient single phase method for the extraction of plasma lipids. Metabolites 5(2):389–403. https://doi.org/10.3390/metabo5020389CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Begum H, Li B, Shui G et al (2016) Discovering and validating between-subject variations in plasma lipids in healthy subjects. Sci Rep 6:19139. https://doi.org/10.1038/srep19139CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sales S, Graessler J, Ciucci S et al (2016) Gender, contraceptives and individual metabolic predisposition shape a healthy plasma lipidome. Sci Rep 6:27710. https://doi.org/10.1038/srep27710CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dunn WB, Wilson ID, Nicholls AW et al (2012) The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis 4(18):2249–2264. https://doi.org/10.4155/bio.12.204CrossRefPubMedGoogle Scholar
  21. 21.
    Kohler I, Verhoeven A, Derks RJ et al (2016) Analytical pitfalls and challenges in clinical metabolomics. Bioanalysis 8(14):1509–1532. https://doi.org/10.4155/bio-2016-0090CrossRefPubMedGoogle Scholar
  22. 22.
    Yin P, Peter A, Franken H et al (2013) Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. Clin Chem 59(5):833–845. https://doi.org/10.1373/clinchem.2012.199257CrossRefPubMedGoogle Scholar
  23. 23.
    Wang J-R, Zhang H, Yau LF et al (2014) Improved sphingolipidomic approach based on ultra-high performance liquid chromatography and multiple mass spectrometries with application to cellular neurotoxicity. Anal Chem 86(12):5688–5696. https://doi.org/10.1021/ac5009964CrossRefPubMedGoogle Scholar
  24. 24.
    Ono Y, Kurano M, Ohkawa R et al (2013) Sphingosine 1-phosphate release from platelets during clot formation: close correlation between platelet count and serum sphingosine 1-phosphate concentration. Lipids Health Dis 12:20. https://doi.org/10.1186/1476-511X-12-20CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yu Z, Kastenmuller G, He Y et al (2011) Differences between human plasma and serum metabolite profiles. PLoS One 6(7):e21230. https://doi.org/10.1371/journal.pone.0021230CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chua EC-P, Shui G, Lee IT-G et al (2013) Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans. Proc Natl Acad Sci U S A 110(35):14468–14473. https://doi.org/10.1073/pnas.1222647110CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hammad SM, Pierce JS, Soodavar F et al (2010) Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J Lipid Res 51(10):3074–3087. https://doi.org/10.1194/jlr.D008532CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Denery JR, Nunes AAK, Dickerson TJ (2011) Characterization of differences between blood sample matrices in untargeted metabolomics. Anal Chem 83(3):1040–1047. https://doi.org/10.1021/ac102806pCrossRefPubMedGoogle Scholar
  29. 29.
    Lima-Oliveira G, Volanski W, Lippi G et al (2017) Pre-analytical phase management: a review of the procedures from patient preparation to laboratory analysis. Scand J Clin Lab Invest 77(3):153–163. https://doi.org/10.1080/00365513.2017.1295317CrossRefPubMedGoogle Scholar
  30. 30.
    Heiligers-Duckers C, Peters NALR, van Dijck JJP et al (2013) Low vacuum and discard tubes reduce hemolysis in samples drawn from intravenous catheters. Clin Biochem 46(12):1142–1144. https://doi.org/10.1016/j.clinbiochem.2013.04.005CrossRefPubMedGoogle Scholar
  31. 31.
    Frej C, Andersson A, Larsson B et al (2015) Quantification of sphingosine 1-phosphate by validated LC-MS/MS method revealing strong correlation with apolipoprotein M in plasma but not in serum due to platelet activation during blood coagulation. Anal Bioanal Chem 407(28):8533–8542. https://doi.org/10.1007/s00216-015-9008-4CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Bo Burla
    • 1
  • Sneha Muralidharan
    • 2
  • Markus R. Wenk
    • 3
  • Federico Torta
    • 3
    Email author
  1. 1.Singapore Lipidomics Incubator (SLING), Life Sciences InstituteNational University of SingaporeSingaporeSingapore
  2. 2.Singapore Lipidomics Incubator (SLING), Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  3. 3.Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of MedicineNational University of SingaporeSingaporeSingapore

Personalised recommendations