Assessment of the Effects of a Wireless Neural Stimulation Mediated by Piezoelectric Nanoparticles

  • Attilio Marino
  • Satoshi Arai
  • Yanyan Hou
  • Mario Pellegrino
  • Barbara Mazzolai
  • Virgilio Mattoli
  • Madoka Suzuki
  • Gianni CiofaniEmail author
Part of the Neuromethods book series (NM, volume 135)


Wireless neuronal stimulation, mediated by ultrasounds and piezoelectric nanoparticles, represents an unprecedented approach aimed at cell activation. Recently, we demonstrated that barium titanate nanoparticles behave as excellent nanotransducers, by eliciting specific cell response following treatment with ultrasounds. In this chapter, we describe in detail the techniques exploited to investigate the nanoparticle/cell interactions and the activation of the neuronal-like cultures in terms of sodium and calcium fluxes.

Key words

Barium titanate nanoparticles Ultrasounds Piezoelectricity SH-SY5Y cells Calcium imaging Sodium imaging 



The authors gratefully thank Mr. Piero Narducci (Department of Chemical Engineering, University of Pisa, Pisa, Italy) for XRD technical assistance. This research was partially supported by the Italian Ministry of Health Grant Number RF-2011-02350464 (to G.C.), by the JSPS KAKENHI Grant Number 26107717 (to M.S.), and by the JSPS Core-to-Core Program, A. Advanced Research Networks (to M.S.).


  1. 1.
    Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18:1213–1225CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8:67–81CrossRefPubMedGoogle Scholar
  3. 3.
    Vidailhet M, Vercueil L, Houeto J-L, Krystkowiak P, Benabid A-L, Cornu P, Lagrange C, Tézenas du Montcel S, Dormont D, Grand S, Blond S, Detante O, Pillon B, Ardouin C, Agid Y, Destée A, Pollak P, French Stimulation du Pallidum Interne dans la Dystonie (SPIDY) Study Group (2005) Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 352:459–467CrossRefPubMedGoogle Scholar
  4. 4.
    Schlaug G, Renga V, Nair D (2008) Transcranial direct current stimulation in stroke recovery. Arch Neurol 65:1571–1576CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Reithler J, Peters JC, Sack AT (2011) Multimodal transcranial magnetic stimulation: using concurrent neuroimaging to reveal the neural network dynamics of noninvasive brain stimulation. Prog Neurobiol 94:149–165CrossRefPubMedGoogle Scholar
  6. 6.
    Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM (2012) Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336:604–608CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Seijo FJ, Alvarez-Vega MA, Gutierrez JC, Fdez-Glez F, Lozano B (2007) Complications in subthalamic nucleus stimulation surgery for treatment of Parkinson’s disease. Review of 272 procedures. Acta Neurochir 149:867–875; discussion 876CrossRefPubMedGoogle Scholar
  8. 8.
    Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565CrossRefPubMedGoogle Scholar
  9. 9.
    Barker AT (1999) The history and basic principles of magnetic nerve stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:3–21PubMedGoogle Scholar
  10. 10.
    Tufail Y, Yoshihiro A, Pati S, Li MM, Tyler WJ (2011) Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat Protoc 6:1453–1470CrossRefPubMedGoogle Scholar
  11. 11.
    Zhao Y, Liao Q, Zhang G, Zhang Z, Liang Q, Liao X, Zhang Y (2015) High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 11:719–727CrossRefGoogle Scholar
  12. 12.
    Wang X, Liu J, Song J, Wang ZL (2007) Integrated nanogenerators in biofluid. Nano Lett 7:2475–2479CrossRefPubMedGoogle Scholar
  13. 13.
    Royo-Gascon N, Wininger M, Scheinbeim JI, Firestein BL, Craelius W (2013) Piezoelectric substrates promote neurite growth in rat spinal cord neurons. Ann Biomed Eng 41:112–122CrossRefPubMedGoogle Scholar
  14. 14.
    Inaoka T, Shintaku H, Nakagawa T, Kawano S, Ogita H, Sakamoto T, Hamanishi S, Wada H, Ito J (2011) Piezoelectric materials mimic the function of the cochlear sensory epithelium. Proc Natl Acad Sci U S A 108:18390–18395CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ciofani G, Danti S, D’Alessandro D, Ricotti L, Moscato S, Bertoni G, Falqui A, Berrettini S, Petrini M, Mattoli V, Menciassi A (2010) Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 4:6267–6277CrossRefPubMedGoogle Scholar
  16. 16.
    Marino A, Arai S, Hou Y, Sinibaldi E, Pellegrino M, Chang Y-T, Mazzolai B, Mattoli V, Suzuki M, Ciofani G (2015) Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano 9:7678–7689CrossRefPubMedGoogle Scholar
  17. 17.
    Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078:9–21CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Attilio Marino
    • 1
  • Satoshi Arai
    • 2
  • Yanyan Hou
    • 2
  • Mario Pellegrino
    • 3
  • Barbara Mazzolai
    • 4
  • Virgilio Mattoli
    • 4
  • Madoka Suzuki
    • 2
    • 5
  • Gianni Ciofani
    • 1
    • 6
    Email author
  1. 1.Smart Bio-InterfacesIstituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34Pontedera (Pisa)Italy
  2. 2.WASEDA Bioscience Research Institute in Singapore (WABIOS)SingaporeSingapore
  3. 3.Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e ChirurgiaUniversity of PisaPisaItaly
  4. 4.Center for Micro-BioRoboticsIstituto Italiano di TecnologiaPontedera (Pisa)Italy
  5. 5.Organization for University Research InitiativesWaseda UniversityTokyoJapan
  6. 6.Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTorinoItaly

Personalised recommendations