Skip to main content

Site-Specific Protein Labeling with Tetrazine Amino Acids

  • Protocol
  • First Online:
Noncanonical Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1728))

Abstract

Genetic code expansion is commonly used to introduce bioorthogonal reactive functional groups onto proteins for labeling. In recent years, the inverse electron demand Diels-Alder reaction between tetrazines and strained trans-cyclooctenes has increased in popularity as a bioorthogonal ligation for protein labeling due to its fast reaction rate and high in vivo stability. We provide methods for the facile synthesis of a tetrazine containing amino acid, Tet-v2.0, and the site-specific incorporation of Tet-v2.0 into proteins via genetic code expansion. Furthermore, we demonstrate that proteins containing Tet-v2.0 can be quickly and efficiently reacted with strained alkene labels at low concentrations. This chemistry has enabled the labeling of protein surfaces with fluorophores, inhibitors, or common posttranslational modifications such as glycosylation or lipidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peng T, Hang HC (2016) Site-specific bioorthogonal labeling for fluorescence imaging of intracellular proteins in living cells. J Am Chem Soc 138:14423–14433. https://doi.org/10.1021/jacs.6b08733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Uttamapinant C, Howe JD, Lang K et al (2015) Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins. J Am Chem Soc 137:4602–4605. https://doi.org/10.1021/ja512838z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Longo J, Yao C, Rios C et al (2014) Reversible biomechano-responsive surface based on green fluorescent protein genetically modified with unnatural amino acids. Chem Commun 51:232–235. https://doi.org/10.1039/C4CC07486F

    Article  Google Scholar 

  4. Tsai Y-H, Essig S, James JR et al (2015) Selective, rapid and optically switchable regulation of protein function in live mammalian cells. Nat Chem 7:554–561. https://doi.org/10.1038/nchem.2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fleissner MR, Brustad EM, Kálai T et al (2009) Site-directed spin labeling of a genetically encoded unnatural amino acid. Proc Natl Acad Sci 106:21637–21642. https://doi.org/10.1073/pnas.0912009106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Someya T, Ando A, Kimoto M, Hirao I (2015) Site-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry. Nucleic Acids Res 43:6665–6676. https://doi.org/10.1093/nar/gkv638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blizzard RJ, Backus DR, Brown W et al (2015) Ideal bioorthogonal reactions using a site-specifically encoded tetrazine amino acid. J Am Chem Soc 137:10044–10047. https://doi.org/10.1021/jacs.5b03275

    Article  CAS  PubMed  Google Scholar 

  8. Lang K, Davis L, Torres-Kolbus J et al (2012) Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat Chem 4:298–304. https://doi.org/10.1038/nchem.1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Erdmann RS, Takakura H, Thompson AD et al (2014) Super-Resolution Imaging of the Golgi in Live Cells with a Bioorthogonal Ceramide Probe. Angew Chem Int Ed 53:10242–10246. https://doi.org/10.1002/anie.201403349

    Article  CAS  Google Scholar 

  10. Agarwal P, Beahm BJ, Shieh P, Bertozzi CR (2015) Systemic fluorescence imaging of zebrafish glycans with bioorthogonal chemistry. Angew Chem Int Ed 54:11504–11510. https://doi.org/10.1002/anie.201504249

    Article  CAS  Google Scholar 

  11. Machida T, Lang K, Xue L et al (2015) Site-specific glycoconjugation of protein via bioorthogonal tetrazine cycloaddition with a genetically encoded trans-cyclooctene or bicyclononyne. Bioconjug Chem 26:802–806. https://doi.org/10.1021/acs.bioconjchem.5b00101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dumas A, Lercher L, Spicer CD, Davis BG (2015) Designing logical codon reassignment – expanding the chemistry in biology. Chem Sci 6:50–69. https://doi.org/10.1039/C4SC01534G

    Article  CAS  PubMed  Google Scholar 

  13. Mayer S, Lang K (2017) Tetrazines in inverse-electron-demand Diels–Alder cycloadditions and their use in biology. Synthesis 49:830–848. https://doi.org/10.1055/s-0036-1588682

    CAS  Google Scholar 

  14. Baskin JM, Prescher JA, Laughlin ST et al (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci 104:16793–16797. https://doi.org/10.1073/pnas.0707090104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lang K, Davis L, Wallace S et al (2012) Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels–Alder reactions. J Am Chem Soc 134:10317–10320. https://doi.org/10.1021/ja302832g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kamber DN, Liang Y, Blizzard RJ et al (2015) 1,2,4-Triazines are versatile bioorthogonal reagents. J Am Chem Soc 137:8388–8391. https://doi.org/10.1021/jacs.5b05100

    Article  CAS  PubMed  Google Scholar 

  17. Seitchik JL, Peeler JC, Taylor MT et al (2012) Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. J Am Chem Soc 134:2898–2901. https://doi.org/10.1021/ja2109745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoffmann J-E, Plass T, Nikić I et al (2015) Highly stable trans-cyclooctene amino acids for live-cell labeling. Chem A Eur J 21:12266–12270. https://doi.org/10.1002/chem.201501647

    Article  CAS  Google Scholar 

  19. Karver MR, Weissleder R, Hilderbrand SA (2011) Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. Bioconjug Chem 22:2263–2270. https://doi.org/10.1021/bc200295y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234. https://doi.org/10.1016/j.pep.2005.01.016

    Article  CAS  PubMed  Google Scholar 

  21. Yang J, Karver MR, Li W et al (2012) Metal-catalyzed one-pot synthesis of tetrazines directly from aliphatic nitriles and hydrazine. Angew Chem Int Ed 51:5222–5225. https://doi.org/10.1002/anie.201201117

    Article  CAS  Google Scholar 

  22. Stateva SR, Salas V, Benaim G et al (2015) Characterization of phospho-(tyrosine)-mimetic calmodulin mutants. PLoS One 10:e0120798. https://doi.org/10.1371/journal.pone.0120798

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan A. Mehl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Blizzard, R.J., Gibson, T.E., Mehl, R.A. (2018). Site-Specific Protein Labeling with Tetrazine Amino Acids. In: Lemke, E. (eds) Noncanonical Amino Acids. Methods in Molecular Biology, vol 1728. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7574-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7574-7_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7573-0

  • Online ISBN: 978-1-4939-7574-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics