Analysis of Circular RNAs Using the Web Tool CircInteractome

  • Amaresh C. Panda
  • Dawood B. Dudekula
  • Kotb AbdelmohsenEmail author
  • Myriam Gorospe
Part of the Methods in Molecular Biology book series (MIMB, volume 1724)


Circular RNAs (circRNAs) are generated through nonlinear back splicing, during which the 5′ and 3′ ends are covalently joined. Consequently, the lack of free ends makes them very stable compared to their counterpart linear RNAs. By selectively interacting with microRNAs and RNA-binding proteins (RBPs), circRNAs have been shown to influence gene expression programs. We designed a web tool, CircInteractome, in order to (1) explore potential interactions of circRNAs with RBPs, (2) design specific divergent primers to detect circRNAs, (3) study tissue- and cell-specific circRNAs, (4) identify gene-specific circRNAs, (5) explore potential miRNAs interacting with circRNAs, and (6) design specific siRNAs to silence circRNAs. Here, we review the CircInteractome tool and explain recent updates to the site. The database is freely accessible at

Key words

RNA-binding proteins Gene-specific circRNAs Divergent primer design Cell- and tissue-specific circRNAs Transcriptome CLIP-seq 



This work was supported in full by the National Institute on Aging Intramural Research Program, National Institutes of Health.


  1. 1.
    Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15:423–437CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schindewolf C, Braun S, Domdey H (1996) In vitro generation of a circular exon from a linear pre-mRNA transcript. Nucleic Acids Res 24:1260–1266CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, Bindereif A (2015) Exon circularization requires canonical splice signals. Cell Rep 10:103–111CrossRefPubMedGoogle Scholar
  5. 5.
    Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211CrossRefPubMedGoogle Scholar
  6. 6.
    Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388CrossRefPubMedGoogle Scholar
  7. 7.
    Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M (2016) CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 13:34–42CrossRefPubMedGoogle Scholar
  8. 8.
    Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582:1977–1986CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Behm-Ansmant I, Rehwinkel J, Izaurralde E (2006) MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb Symp Quant Biol 71:523–530CrossRefPubMedGoogle Scholar
  10. 10.
    Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20:1666–1670CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Amaresh C. Panda
    • 1
  • Dawood B. Dudekula
    • 1
  • Kotb Abdelmohsen
    • 1
    Email author
  • Myriam Gorospe
    • 1
  1. 1.Laboratory of Genetics and GenomicsNational Institute on Aging-Intramural Research Program, National Institutes of HealthBaltimoreUSA

Personalised recommendations