Proteomic Profiling of Secreted Proteins, Exosomes, and Microvesicles in Cell Culture Conditioned Media

  • Ankit Sinha
  • Simona Principe
  • Javier Alfaro
  • Alex Ignatchenko
  • Vladimir Ignatchenko
  • Thomas KislingerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1722)


Secreted proteins are of tremendous biological interest since they can act as ligands for receptors to activate downstream signalling cascades or be used as biomarkers if altered abundance is correlated with a specific pathological state. Proteins can be secreted either as soluble molecules or as part of extracellular vesicles (i.e., exosomes or microvesicles). The complete proteomic profiling of secretomes requires analysis of secreted proteins and extracellular vesicles. Hence, the method described here enriches for microvesicles, exosomes, and secreted proteins from conditioned media using differential centrifugation. The three fractions are then analyzed by mass spectrometry-based proteomics for in-depth characterization and comparison of the protein secretome of cell lines.

Key words

Extracellular vesicles Exosomes Microvesicles Secreted proteins Secretome Proteomics Mass spectrometry 



This study was funded by the Canadian Institutes of Health Research (CIHR) to T.K. (MOP-133615). A.S. was supported through a CIHR Doctoral Award. S.P. was supported by the CIHR Terry Fox Foundation Strategic Training Initiative for Excellence in Radiation Research in the 21st Century. A.I. was supported in parts by the PMH Head and Neck Translational group. T.K. is supported by the Canada Research Chair Program. Support is also provided from the Campbell Family Institute for Cancer Research and the Ministry of Health and Long-term Planning.


  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  2. 2.
    Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150CrossRefPubMedGoogle Scholar
  3. 3.
    Schiarea S, Solinas G, Allavena P, Scigliuolo GM, Bagnati R, Fanelli R, Chiabrando C (2010) Secretome analysis of multiple pancreatic cancer cell lines reveals perturbations of key functional networks. J Proteome Res 9:4376–4392CrossRefPubMedGoogle Scholar
  4. 4.
    Xu BJ, Yan W, Jovanovic B, An AQ, Cheng N, Aakre ME et al (2010) Quantitative analysis of the secretome of TGF-beta signaling-deficient mammary fibroblasts. Proteomics 10:2458–2470CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mathias RA, Wang B, Ji H, Kapp EA, Moritz RL, Zhu HJ, Simpson RJ (2009) Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals extracellular modulators of epithelial-mesenchymal transition. J Proteome Res 8:2827–2837CrossRefPubMedGoogle Scholar
  6. 6.
    Luo X, Liu Y, Wang R, Hu H, Zeng R, Chen H (2011) A high-quality secretome of A549 cells aided the discovery of C4b-binding protein as a novel serum biomarker for non-small cell lung cancer. J Proteome 74:528–538CrossRefGoogle Scholar
  7. 7.
    Oksvold MP, Neurauter A, Pedersen KW (2015) Magnetic bead-based isolation of exosomes. Methods Mol Biol 1218:465–481CrossRefPubMedGoogle Scholar
  8. 8.
    Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579PubMedGoogle Scholar
  9. 9.
    Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M et al (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14:319CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yoon YJ, Kim OY, Gho YS (2014) Extracellular vesicles as emerging intercellular communicasomes. BMB Rep 47:531–539CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Beach A, Zhang HG, Ratajczak MZ, Kakar SS (2014) Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res 7(1):14CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Saleem SN, Abdel-Mageed AB (2014) Tumor-derived exosomes in oncogenic reprogramming and cancer progression. Cell Mol Life Sci 72:1–10CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lu M, Huang B, Hanash SM, Onuchic JN, Ben-Jacob E (2014) Modeling putative therapeutic implications of exosome exchange between tumor and immune cells. Proc Natl Acad Sci U S A 7:E4165–E4174CrossRefGoogle Scholar
  16. 16.
    Lundholm M, Schroder M, Nagaeva O, Baranov V, Widmark A, Mincheva-Nilsson L, Wikstrom P (2014) Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS One 9:e108925CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151:1542–1556CrossRefPubMedGoogle Scholar
  18. 18.
    Shimoda M, Principe S, Jackson HW, Luga V, Fang H, Molyneux SD et al (2014) Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat Cell Biol 16:889–901CrossRefPubMedGoogle Scholar
  19. 19.
    Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A et al (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298CrossRefPubMedGoogle Scholar
  20. 20.
    Aliotta JM, Sanchez-Guijo FM, Dooner GJ, Johnson KW, Dooner MS, Greer KA et al (2007) Alteration of marrow cell gene expression, protein production, and engraftment into lung by lung-derived microvesicles: a novel mechanism for phenotype modulation. Stem Cells 25:2245–2256CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sinha A, Ignatchenko V, Ignatchenko A, Mejia-Guerrero S, Kislinger T (2014) In-depth proteomic analyses of ovarian cancer cell line exosomes reveals differential enrichment of functional categories compared to the NCI 60 proteome. Biochem Biophys Res Commun 445:694–701CrossRefPubMedGoogle Scholar
  22. 22.
    Lee TH, D’Asti E, Magnus N, Al-Nedawi K, Meehan B, Rak J (2011) Microvesicles as mediators of intercellular communication in cancer--the emerging science of cellular ‘debris’. Semin Immunopathol 33:455–467CrossRefPubMedGoogle Scholar
  23. 23.
    Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A et al (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14:677–685CrossRefPubMedGoogle Scholar
  24. 24.
    Ebert MP, Korc M, Malfertheiner P, Rocken C (2006) Advances, challenges, and limitations in serum-proteome-based cancer diagnosis. J Proteome Res 5:19–25CrossRefPubMedGoogle Scholar
  25. 25.
    Eichelbaum K, Winter M, Berriel Diaz M, Herzig S, Krijgsveld J (2012) Selective enrichment of newly synthesized proteins for quantitative secretome analysis. Nat Biotechnol 30:984–990CrossRefPubMedGoogle Scholar
  26. 26.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372CrossRefPubMedGoogle Scholar
  27. 27.
    Deutsch EW, Mendoza L, Shteynberg D, Farrah T, Lam H, Tasman N et al (2010) A guided tour of the Trans-Proteomic Pipeline. Proteomics 10:1150–1159CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D et al (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 11:M111.010587CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Ankit Sinha
    • 1
    • 2
  • Simona Principe
    • 2
  • Javier Alfaro
    • 1
    • 2
  • Alex Ignatchenko
    • 2
  • Vladimir Ignatchenko
    • 2
  • Thomas Kislinger
    • 1
    Email author
  1. 1.Department of Medical BiophysicsUniversity of TorontoTorontoCanada
  2. 2.Princess Margaret Cancer CentreTorontoCanada

Personalised recommendations