In Vivo Recordings of Network Activity Using Local Field Potentials and Single Units in Movement and Network Pathophysiology

Protocol
Part of the Neuromethods book series (NM, volume 134)

Abstract

This chapter introduces basic and some advanced methods for recording, analyzing, and comparing local network electrophysiological activity in rodents and primates. Attention will be paid to the acquisition of network signals that consider the local field potentials (LFPs) and single-unit and multiunit activity. Analysis methods for extracting main features from LFP signals, their frequency, power, and coherence will be discussed, as well as the relation of unit activity with the LFPs. The relationship with movement and behavior will be developed, and so will the relation of these measures with network activity in specific pathologies of the local networks.

Keywords

Local field potentials Unit activity Oscillations Synchrony 

Notes

Acknowledgments

Richard and Maxime wish to thank their respective former or current supervisors for their useful and prescient technical explorations. Richard thanks Maxime for being his first graduate student and for progressing so well. Special thanks are given to Roy Sillitoe for inviting us to write this chapter.

References

  1. 1.
    Friston KJ et al (2015) LFP and oscillations-what do they tell us? Curr Opin Neurobiol 31:1–6PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lowe MJ et al (2016) Modern methods for interrogating the human connectome. J Int Neuropsychol Soc 22(2):105–119PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Frederick A, Bourget-Murray J, Courtemanche R (2013) Local field potential, synchrony of. In: Jaeger D, Jung R (eds) Encyclopedia of Computational Neuroscience: SpringerReference. Springer-Verlag, Berlin, Heidelberg; http://www.springerreference.com.Google Scholar
  5. 5.
    Dugué GP et al (2009) Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron 61(1):126–139PubMedCrossRefGoogle Scholar
  6. 6.
    Courtemanche R, Pellerin JP, Lamarre Y (2002) Local field potential oscillations in primate cerebellar cortex: modulation during active and passive expectancy. J Neurophysiol 88:771–782PubMedGoogle Scholar
  7. 7.
    Glasgow SD, Chapman CA (2007) Local generation of theta-frequency EEG activity in the parasubiculum. J Neurophysiol 97(6):3868–3879PubMedCrossRefGoogle Scholar
  8. 8.
    Robinson JC, Chapman CA, Courtemanche R (2017) Gap junction modulation of low-frequency oscillations in the cerebellar granule cell layer. Cerebellum 16(4):802–811PubMedCrossRefGoogle Scholar
  9. 9.
    Ward MP et al (2009) Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res 1282:183–200PubMedCrossRefGoogle Scholar
  10. 10.
    Vetter RJ et al (2004) Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. IEEE Trans Biomed Eng 51(6):896–904PubMedCrossRefGoogle Scholar
  11. 11.
    DeCoteau WE et al (2007) Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task. Proc Natl Acad Sci U S A 104(13):5644–5649PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Battaglia FP et al (2009) The Lantern: an ultra-light micro-drive for multi-tetrode recordings in mice and other small animals. J Neurosci Methods 178(2):291–300PubMedCrossRefGoogle Scholar
  13. 13.
    Jeantet Y, Cho YH (2003) Design of a twin tetrode microdrive and headstage for hippocampal single unit recordings in behaving mice. J Neurosci Methods 129(2):129–134PubMedCrossRefGoogle Scholar
  14. 14.
    Takahashi S, Anzai Y, Sakurai Y (2003) Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes. J Neurophysiol 89(4):2245–2258PubMedCrossRefGoogle Scholar
  15. 15.
    Lee CW et al (2013) The accuracy and precision of signal source localization with tetrodes. Conf Proc IEEE Eng Med Biol Soc 2013:531–534PubMedGoogle Scholar
  16. 16.
    Chelaru MI, Jog MS (2005) Spike source localization with tetrodes. J Neurosci Methods 142(2):305–315PubMedCrossRefGoogle Scholar
  17. 17.
    Gao H, Solages CD, Lena C (2012) Tetrode recordings in the cerebellar cortex. J Physiol Paris 106(3–4):128–136.  https://doi.org/10.1016/j.jphysparis.2011.10.005 PubMedCrossRefGoogle Scholar
  18. 18.
    Levesque M, Herrington R, Hamidi S and Avoli M (2016). Interneurons spark seizure-like activity in the entorhinal cortex. Neurobiol Dis 87:91–101. https://doi.org/10.1016/j.nbd.2015.12.011Google Scholar
  19. 19.
    Kapoor V et al (2013) Development of tube tetrodes and a multi-tetrode drive for deep structure electrophysiological recordings in the macaque brain. J Neurosci Methods 216(1):43–48PubMedCrossRefGoogle Scholar
  20. 20.
    White JJ et al (2016) An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J Neurosci Methods 262:21–31PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Sugihara I, Lang EJ, Llinás R (1995) Serotonin modulation of inferior olivary oscillations and synchronicity: a multiple-electrode study in the rat cerebellum. Eur J Neurosci 7:521–534PubMedCrossRefGoogle Scholar
  22. 22.
    Welsh JP et al (1995) Dynamic organization of motor control within the olivocerebellar system. Nature 374:453–457PubMedCrossRefGoogle Scholar
  23. 23.
    Welsh JP, Schwarz C, Nicolelis MAL (1999) Multielectrode recording from the cerebellum. In: Simon SA, Nicolelis MAL (eds) Methods for neural ensemble recordings. CRC Press, Boca Raton, FL, pp 79–100Google Scholar
  24. 24.
    Bokil H et al (2010) Chronux: a platform for analyzing neural signals. J Neurosci Methods 192(1):146–151PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Melman T, Victor JD (2016) Robust power spectral estimation for EEG data. J Neurosci Methods 268:14–22PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wallisch P et al (2014) MATLAB for neuroscientists, 2nd edn. UK Academic Press, London, p 550Google Scholar
  27. 27.
    Cohen MX (2014) Analyzing neural time series data: theory and practice. MIT Press, Cambridge, MA, p 600Google Scholar
  28. 28.
    Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90(3):1195–1268PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Buzsaki G, Watson BO (2012) Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci 14(4):345–367PubMedPubMedCentralGoogle Scholar
  30. 30.
    Buzsaki G (2006) Rhythms of the brain. Oxford University Press, New York, pp 1–448CrossRefGoogle Scholar
  31. 31.
    Hartmann MJ, Bower JM (1998) Oscillatory activity in the cerebellar hemispheres of unrestrained rats. J Neurophysiol 80:1598–1604PubMedGoogle Scholar
  32. 32.
    O'Connor S, Berg RW, Kleinfeld D (2002) Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking. J Neurophysiol 87:2137–2148PubMedCrossRefGoogle Scholar
  33. 33.
    Frederick A et al (2014) Diurnal influences on electrophysiological oscillations and coupling in the dorsal striatum and cerebellar cortex of the anesthetized rat. Front Syst Neurosci 8:145PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Courtemanche R, Robinson JC, Aponte DI (2013) Linking oscillations in cerebellar circuits. Front Neural Circuits 7:125PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Courtemanche R, Fujii N, Graybiel AM (2003) Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. J Neurosci 23(37):11741–11752PubMedGoogle Scholar
  36. 36.
    Lu Y et al (2015) Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex. J Neurophysiol 113(10):3574–3587PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929PubMedCrossRefGoogle Scholar
  38. 38.
    Bullock TH (1997) Signals and signs in the nervous system: the dynamic anatomy of electrical activity is probably information-rich. Proc Natl Acad Sci U S A 94:1–6PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gerstein GL (1999) Correlation-based analysis methods for neural ensemble data. In: Simon SA, Nicolelis MAL (eds) Methods for neural ensemble recording. CRC Press, Boca Raton, FL, pp 157–177Google Scholar
  40. 40.
    Lamarre Y, Raynauld JP (1965) Rhythmic firing in the spontaneous activity of centrally located neurons. A method of analysis. Electroencephalogr Clin Neurophysiol 18:87–90PubMedCrossRefGoogle Scholar
  41. 41.
    Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys J 7:419–440PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Destexhe A, Contreras D, Steriade M (1999) Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19(11):4595–4608PubMedGoogle Scholar
  43. 43.
    Hurtado JM, Rubchinsky LL, Sigvardt KA (2004) Statistical method for detection of phase-locking episodes in neural oscillations. J Neurophysiol 91(4):1883–1898PubMedCrossRefGoogle Scholar
  44. 44.
    Perez-Orive J et al (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359–365PubMedCrossRefGoogle Scholar
  45. 45.
    Berens P (2009) CircStat: a Matlab toolbox for circular statistics. J Stat Softw 31(10):1–21CrossRefGoogle Scholar
  46. 46.
    Fries P et al (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563PubMedCrossRefGoogle Scholar
  47. 47.
    Loeb GE, Gans C (1986) Electromyography for experimentalists. University of Chicago Press, Chicago, p 365Google Scholar
  48. 48.
    Stamoulis C, Richardson AG (2010) Encoding of brain state changes in local field potentials modulated by motor behaviors. J Comput Neurosci 29(3):475–483PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Harris KD et al (2003) Organization of cell assemblies in the hippocampus. Nature 424:552–556PubMedCrossRefGoogle Scholar
  50. 50.
    DeCoteau, W.E., et al. (2004) Theta-gamma oscillations in local field potentials are prominent in the rat striatum and are coordinated with hippocampal rhythms in behaviorally selective patternsGoogle Scholar
  51. 51.
    Igarashi J et al (2013) A theta-gamma oscillation code for neuronal coordination during motor behavior. J Neurosci 33(47):18515–18530PubMedCrossRefGoogle Scholar
  52. 52.
    Hwang EJ, Andersen RA (2009) Brain control of movement execution onset using local field potentials in posterior parietal cortex. J Neurosci 29(45):14363–14370PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Howe MW et al (2011) Habit learning is associated with major shifts in frequencies of oscillatory activity and synchronized spike firing in striatum. Proc Natl Acad Sci U S A 108(40):16801–16806PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Thorn CA et al (2010) Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66(5):781–795PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    MacKay WA (1997) Synchronized neuronal oscillations and their role in motor processes. Trends Cogn Sci 1(5):176–183PubMedCrossRefGoogle Scholar
  56. 56.
    Basar E et al (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39(2–3):241–248PubMedCrossRefGoogle Scholar
  57. 57.
    Lubenov EV, Siapas AG (2009) Hippocampal theta oscillations are travelling waves. Nature 459(7246):534–539PubMedCrossRefGoogle Scholar
  58. 58.
    Siapas AG, Wilson MA (1998) Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21:1123–1128PubMedCrossRefGoogle Scholar
  59. 59.
    Sharott A et al (2012) Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo. J Neurosci 32(38):13221–13236PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Clement EA et al (2008) Cyclic and sleep-like spontaneous alternations of brain state under urethane anaesthesia. PLoS One 3(4):e2004PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Jefferys JG et al (2012) Mechanisms of physiological and epileptic HFO generation. Prog Neurobiol 98(3):250–264PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Benar CG et al (2010) Pitfalls of high-pass filtering for detecting epileptic oscillations: a technical note on “false” ripples. Clin Neurophysiol 121(3):301–310PubMedCrossRefGoogle Scholar
  63. 63.
    Menendez de la Prida L, Staba RJ, Dian JA. Conundrums of high-frequency oscillations (80–800 Hz) in the epileptic brain. J Clin Neurophysiol. 2015 Jun;32(3):207–19.  https://doi.org/10.1097/WNP.0000000000000150.
  64. 64.
    Worrell GA et al (2012) Recording and analysis techniques for high-frequency oscillations. Prog Neurobiol 98(3):265–278PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Levesque M, Behr C, Avoli M (2015) The anti-ictogenic effects of levetiracetam are mirrored by interictal spiking and high-frequency oscillation changes in a model of temporal lobe epilepsy. Seizure 25:18–25PubMedCrossRefGoogle Scholar
  66. 66.
    Buffalo EA et al (2011) Laminar differences in gamma and alpha coherence in the ventral stream. Proc Natl Acad Sci U S A 108(27):11262–11267PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Moser E et al (2010) Coordination in brain systems. In: von der Marlsburg C, Phillips WA, Singer W (eds) Dynamic coordination in the brain: from neurons to mind. MIT Press, Cambridge, MA, pp 193–214CrossRefGoogle Scholar
  68. 68.
    Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480PubMedCrossRefGoogle Scholar
  69. 69.
    Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31(2–3):236–250PubMedCrossRefGoogle Scholar
  70. 70.
    Schmahmann JD (1997) The cerebellum and cognition—International review of neurobiology, vol 41. Academic Press, San Diego, p 665Google Scholar
  71. 71.
    Hoshi E et al (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8(11):1491–1493PubMedCrossRefGoogle Scholar
  72. 72.
    Bostan AC, Dum RP, Strick PL (2010) The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A 107(18):8452–8456PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Roelfsema PR et al (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385:157–161PubMedCrossRefGoogle Scholar
  74. 74.
    Jacobs J, Kahana MJ (2010) Direct brain recordings fuel advances in cognitive electrophysiology. Trends Cogn Sci 14(4):162–171PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Boraud T et al (2005) Oscillations in the basal ganglia: the good, the bad, and the unexpected. In: The Basal Ganglia VIII. Springer Science and Business Media, New York, pp 3–24Google Scholar
  76. 76.
    D'Angelo E et al (2009) Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience 162(3):805–815PubMedCrossRefGoogle Scholar
  77. 77.
    Gatev P, Darbin O, Wichmann T (2006) Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov Disord 21(10):1566–1577PubMedCrossRefGoogle Scholar
  78. 78.
    Courtemanche R, Lamarre Y (2005) Local field potential oscillations in primate cerebellar cortex: Synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol 93(4):2039–2052PubMedCrossRefGoogle Scholar
  79. 79.
    Courtemanche R, Chabaud P, Lamarre Y (2009) Synchronization in primate cerebellar granule cell layer local field potentials: basic anisotropy and dynamic changes during active expectancy. Front Cell Neurosci 3:6PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    DeCoteau WE et al (2007) Oscillations of local field potentials in the rat dorsal striatum during spontaneous and instructed behaviors. J Neurophysiol 97(5):3800–3805PubMedCrossRefGoogle Scholar
  81. 81.
    Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6(4):285–296PubMedCrossRefGoogle Scholar
  82. 82.
    Gross J et al (2002) The neural basis of intermittent motor control in humans. Proc Natl Acad Sci U S A 99(4):2299–2302PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Michalareas G et al (2016) Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89(2):384–397PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford, p 772CrossRefGoogle Scholar
  85. 85.
    Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198PubMedCrossRefGoogle Scholar
  86. 86.
    Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349PubMedGoogle Scholar
  87. 87.
    van den Heuvel MP, Bullmore ET, Sporns O (2016) Comparative connectomics. Trends Cogn Sci 20(5):345–361PubMedCrossRefGoogle Scholar
  88. 88.
    Misic B, Sporns O (2016) From regions to connections and networks: new bridges between brain and behavior. Curr Opin Neurobiol 40:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Richiardi J et al (2015) BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks. Science 348(6240):1241–1244PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30(7):357–364PubMedCrossRefGoogle Scholar
  91. 91.
    Dostrovsky JO, Bergman H (2004) Oscillatory activity in the basal ganglia—relationship to normal physiology and pathophysiology. Brain 127:721–722PubMedCrossRefGoogle Scholar
  92. 92.
    Hutchison WD et al (2004) Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J Neurosci 24(42):9240–9243PubMedCrossRefGoogle Scholar
  93. 93.
    Berke JD et al (2004) Oscillatory entrainment of striatal neurons in freely moving rats. Neuron 43(6):883–896PubMedCrossRefGoogle Scholar
  94. 94.
    Raz A et al (1996) Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. J Neurophysiol 76:2083–2088PubMedGoogle Scholar
  95. 95.
    Costa RM et al (2006) Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron 52(2):359–369PubMedCrossRefGoogle Scholar
  96. 96.
    Beck MH et al (2016) Short- and long-term dopamine depletion causes enhanced beta oscillations in the cortico-basal ganglia loop of parkinsonian rats. Exp Neurol 286:124–136PubMedCrossRefGoogle Scholar
  97. 97.
    Pan MK et al (2016) Neuronal firing patterns outweigh circuitry oscillations in parkinsonian motor control. J Clin Invest 126(12):4516–4526PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lemaire N et al (2012) Effects of dopamine depletion on LFP oscillations in striatum are task- and learning-dependent and selectively reversed by L-DOPA. Proc Natl Acad Sci U S A 109(44):18126–18131PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Liu C et al (2017) Modeling and analysis of beta oscillations in the Basal Ganglia. IEEE Trans Neural Netw Learn Syst.  https://doi.org/10.1109/TNNLS.2017.2688426
  100. 100.
    Belic JJ, Kumar A, Hellgren Kotaleski J (2017) Interplay between periodic stimulation and GABAergic inhibition in striatal network oscillations. PLoS One 12(4):e0175135PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Blenkinsop A, Anderson S, Gurney K (2017) Frequency and function in the basal ganglia: the origins of beta and gamma band activity. J Physiol 595(13):4525–4548.  https://doi.org/10.1113/JP273760 PubMedCrossRefGoogle Scholar
  102. 102.
    Tinkhauser G et al (2017) The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain 140(4):1053–1067PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Cendes F et al (1993) Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI volumetric study. Neurology 43(6):1083–1087PubMedCrossRefGoogle Scholar
  104. 104.
    French JA et al (1993) Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol 34(6):774–780PubMedCrossRefGoogle Scholar
  105. 105.
    Spencer SS, Spencer DD (1994) Entorhinal-hippocampal interactions in medial temporal lobe epilepsy. Epilepsia 35(4):721–727PubMedCrossRefGoogle Scholar
  106. 106.
    Engel J Jr et al (2012) Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA 307(9):922–930PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Jacobs J et al (2008) Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia 49(11):1893–1907PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Staba RJ et al (2004) High-frequency oscillations recorded in human medial temporal lobe during sleep. Ann Neurol 56(1):108–115PubMedCrossRefGoogle Scholar
  109. 109.
    Staba RJ et al (2002) Quantitative analysis of high-frequency oscillations (80–500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J Neurophysiol 88(4):1743–1752PubMedGoogle Scholar
  110. 110.
    Urrestarazu E et al (2007) Interictal high-frequency oscillations (100–500 Hz) in the intracerebral EEG of epileptic patients. Brain 130(Pt 9):2354–2366PubMedCrossRefGoogle Scholar
  111. 111.
    van't Klooster MA et al (2015) High frequency oscillations in the intra-operative ECoG to guide epilepsy surgery (“The HFO Trial”): study protocol for a randomized controlled trial. Trials 16:422CrossRefGoogle Scholar
  112. 112.
    Haegelen C et al (2013) High-frequency oscillations, extent of surgical resection, and surgical outcome in drug-resistant focal epilepsy. Epilepsia 54(5):848–857PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Jacobs J et al (2010) High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol 67(2):209–220PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Bragin A et al (1999) Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid--treated rats with chronic seizures. Epilepsia 40(2):127–137PubMedCrossRefGoogle Scholar
  115. 115.
    Salami P et al (2014) Dynamics of interictal spikes and high-frequency oscillations during epileptogenesis in temporal lobe epilepsy. Neurobiol Dis 67:97–106PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Levesque M et al (2011) High-frequency (80–500 Hz) oscillations and epileptogenesis in temporal lobe epilepsy. Neurobiol Dis 42(3):231–241PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kohling R et al (2016) Hypersynchronous ictal onset in the perirhinal cortex results from dynamic weakening in inhibition. Neurobiol Dis 87:1–10PubMedCrossRefGoogle Scholar
  118. 118.
    Levesque M et al (2012) Two seizure-onset types reveal specific patterns of high-frequency oscillations in a model of temporal lobe epilepsy. J Neurosci 32(38):13264–13272PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Bragin A et al (2005) Analysis of chronic seizure onsets after intrahippocampal kainic acid injection in freely moving rats. Epilepsia 46(10):1592–1598PubMedCrossRefGoogle Scholar
  120. 120.
    Ylinen A et al (1995) Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15(1 Pt 1):30–46PubMedGoogle Scholar
  121. 121.
    Buzsaki G et al (1992) High-frequency network oscillation in the hippocampus. Science 256(5059):1025–1027PubMedCrossRefGoogle Scholar
  122. 122.
    Perucca P, Dubeau F, Gotman J (2014) Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology. Brain 137(Pt 1):183–196PubMedCrossRefGoogle Scholar
  123. 123.
    Weiss SA et al (2016) Ripples on spikes show increased phase-amplitude coupling in mesial temporal lobe epilepsy seizure-onset zones. Epilepsia 57(11):1916–1930PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Brazier MAB (1962) The analysis of brain waves. Sci Am 207(6):1–10Google Scholar
  125. 125.
    Grey Walter W, Magoun HW (1959) Intrinsic rhythms of the brain. In: Handbook of physiology—Section 1: Neurophysiology. American Physiological Society, Washington, DC, pp 279–298Google Scholar
  126. 126.
    Hubel DH (1957) Tungsten microelectrode for recording from single units. Science 125:549–550PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of Exercise Science & FRQS Groupe de Recherche en Neurobiologie Comportementale/CSBNConcordia UniversityMontréalCanada
  2. 2.Montreal Neurological Institute and Department of Neurology & NeurosurgeryMcGill UniversityMontréalCanada

Personalised recommendations