Advertisement

Peptidomics pp 71-96 | Cite as

Bioinformatics for Prohormone and Neuropeptide Discovery

  • Bruce R. Southey
  • Elena V. Romanova
  • Sandra L. Rodriguez-Zas
  • Jonathan V. SweedlerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1719)

Abstract

Neuropeptides and peptide hormones are signaling molecules produced via complex post-translational modifications of precursor proteins known as prohormones. Neuropeptides activate specific receptors and are associated with the regulation of physiological systems and behaviors. The identification of prohormones—and the neuropeptides created by these prohormones—from genomic assemblies has become essential to support the annotation and use of the rapidly growing number of sequenced genomes. Here we describe a methodology for identifying the prohormone complement from genomic assemblies that employs widely available public toolsets and databases. The uncovered prohormone sequences can then be screened for putative neuropeptides to enable accurate proteomic discovery and validation.

Key words

Neuropeptide Prohormone Homology Bioinformatics Cleavage Gene prediction 

Notes

Acknowledgments

This work was supported by the National Institutes of Health, Award No. P30 DA018310 from the National Institute on Drug Abuse (NIDA), the US Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) project No. ILLU-538-909, and the National Science Foundation, Award No. CHE-16-06791. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

References

  1. 1.
    Burger E (1988) Peptide hormones and neuropeptides. Proteolytic processing of the precursor regulatory peptides. Arzneimittelforschung 38(5):754–761PubMedGoogle Scholar
  2. 2.
    von Heijne G (1990) The signal peptide. J Membr Biol 115(3):195–201.  https://doi.org/10.1007/bf01868635 CrossRefGoogle Scholar
  3. 3.
    Amare A, Hummon AB, Southey BR, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2006) Bridging neuropeptidomics and genomics with bioinformatics: prediction of mammalian neuropeptide prohormone processing. J Proteome Res 5(5):1162–1167.  https://doi.org/10.1021/pr0504541 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    CK H, Southey BR, Romanova EV, Maruska KP, Sweedler JV, Fernald RD (2016) Identification of prohormones and pituitary neuropeptides in the African cichlid, Astatotilapia Burtoni. BMC Genomics 17(1):660.  https://doi.org/10.1186/s12864-016-2914-9 CrossRefGoogle Scholar
  5. 5.
    Porter KI, Southey BR, Sweedler JV, Rodriguez-Zas SL (2012) First survey and functional annotation of prohormone and convertase genes in the pig. BMC Genomics 13:582.  https://doi.org/10.1186/1471-2164-13-582 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Southey BR, Rodriguez-Zas SL, Sweedler JV (2009) Characterization of the prohormone complement in cattle using genomic libraries and cleavage prediction approaches. BMC Genomics 10:228.  https://doi.org/10.1186/1471-2164-10-228 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Southey BR, Sweedler JV, Rodriguez-Zas SL (2008) A python analytical pipeline to identify prohormone precursors and predict prohormone cleavage sites. Front Neuroinform 2:7.  https://doi.org/10.3389/neuro.11.007.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Southey BR, Sweedler JV, Rodriguez-Zas SL (2008) Prediction of neuropeptide cleavage sites in insects. Bioinformatics 24(6):815–825.  https://doi.org/10.1093/bioinformatics/btn044 CrossRefPubMedGoogle Scholar
  9. 9.
    Tegge AN, Southey BR, Sweedler JV, Rodriguez-Zas SL (2008) Comparative analysis of neuropeptide cleavage sites in human, mouse, rat, and cattle. Mamm Genome 19(2):106–120.  https://doi.org/10.1007/s00335-007-9090-9 CrossRefPubMedGoogle Scholar
  10. 10.
    Murphy D, Alim FZD, Hindmarch C, Greenwood M, Rogers M, Gan CK, Yealing T, Romanova EV, Southey BR, Sweedler JV (2016) Seasonal adaptations of the hypothalamo-neurohypophyseal system of the Arabian one-humped camel. Paper presented at the Plant and Animal Genome, San Diego, CA, USA. https://pag.confex.com/pag/xxiv/webprogram/Paper18655.html
  11. 11.
    Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2006) NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res 34 (Web Server issue):W267–272. doi: https://doi.org/10.1093/nar/gkl161
  12. 12.
    Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2017) NeuroPred application. http://neuroproteomics.scs.illinois.edu/neuropred.htm. Accessed 21 Feb 2017
  13. 13.
    Southey BR, Rodriguez-Zas SL, Sweedler JV (2006) Prediction of neuropeptide prohormone cleavages with application to RFamides. Peptides 27(5):1087–1098.  https://doi.org/10.1016/j.peptides.2005.07.026 CrossRefPubMedGoogle Scholar
  14. 14.
    Southey BR, Rodriguez Zas SL (2017) PepShop application. http://stagbeetle.animal.uiuc.edu/pepshop. Accessed 21 Feb 2017
  15. 15.
    Grimmelikhuijzen CJ, Hauser F (2012) Mini-review: the evolution of neuropeptide signaling. Regul Pept 177(Suppl):S6–S9.  https://doi.org/10.1016/j.regpep.2012.05.001 CrossRefPubMedGoogle Scholar
  16. 16.
    Romanova EV, Sweedler JV (2015) Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol Sci 36(9):579–586.  https://doi.org/10.1016/j.tips.2015.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Glasauer SM, Neuhauss SC (2014) Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Gen Genomics 289(6):1045–1060.  https://doi.org/10.1007/s00438-014-0889-2 CrossRefGoogle Scholar
  18. 18.
    Coordinators NR (2017) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 45(D1):D12–D17.  https://doi.org/10.1093/nar/gkw1071 CrossRefGoogle Scholar
  19. 19.
    Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Fitzgerald S, Gil L, Giron CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Johnson N, Juettemann T, Keenan S, Lavidas I, Martin FJ, Maurel T, McLaren W, Murphy DN, Nag R, Nuhn M, Parker A, Patricio M, Pignatelli M, Rahtz M, Riat HS, Sheppard D, Taylor K, Thormann A, Vullo A, Wilder SP, Zadissa A, Birney E, Harrow J, Muffato M, Perry E, Ruffier M, Spudich G, Trevanion SJ, Cunningham F, Aken BL, Zerbino DR, Flicek P (2016) Ensembl 2016. Nucleic Acids Res 44(D1):D710–D716.  https://doi.org/10.1093/nar/gkv1157 CrossRefPubMedGoogle Scholar
  20. 20.
    UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204–D212.  https://doi.org/10.1093/nar/gku989 Google Scholar
  21. 21.
    Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, Farrell CM, Hart J, Landrum MJ, McGarvey KM, Murphy MR, O’Leary NA, Pujar S, Rajput B, Rangwala SH, Riddick LD, Shkeda A, Sun H, Tamez P, Tully RE, Wallin C, Webb D, Weber J, Wu W, DiCuccio M, Kitts P, Maglott DR, Murphy TD, Ostell JM (2014) RefSeq: an update on mammalian reference sequences. Nucleic Acids Res 42(Database issue):D756–D763.  https://doi.org/10.1093/nar/gkt1114 CrossRefPubMedGoogle Scholar
  22. 22.
    Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2017) NeuroPred sequence data. http://stagbeetle.animal.uiuc.edu/neuropred/sequences/Sequencedata.html. Accessed 21 Feb 2017
  23. 23.
    Liu F, Baggerman G, Schoofs L, Wets G (2008) The construction of a bioactive peptide database in Metazoa. J Proteome Res 7(9):4119–4131.  https://doi.org/10.1021/pr800037n CrossRefPubMedGoogle Scholar
  24. 24.
    Burbach JP (2010) Neuropeptides from concept to online database www.neuropeptides.nl. Eur J Pharmacol 626(1):27–48.  https://doi.org/10.1016/j.ejphar.2009.10.015 CrossRefPubMedGoogle Scholar
  25. 25.
    Falth M, Skold K, Norrman M, Svensson M, Fenyo D, Andren PE (2006) SwePep, a database designed for endogenous peptides and mass spectrometry. Mol Cell Proteomics 5(6):998–1005.  https://doi.org/10.1074/mcp.M500401-MCP200 CrossRefPubMedGoogle Scholar
  26. 26.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389
  27. 27.
    Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7:539.  https://doi.org/10.1038/msb.2011.75 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14(5):988–995.  https://doi.org/10.1101/gr.1865504 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wilkinson TN, Speed TP, Tregear GW, Bathgate RA (2005) Evolution of the relaxin-like peptide family. BMC Evol Biol 5:14.  https://doi.org/10.1186/1471-2148-5-14 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wysolmerski JJ (2012) Parathyroid hormone-related protein: an update. J Clin Endocrinol Metab 97(9):2947–2956.  https://doi.org/10.1210/jc.2012-2142 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bhattacharya P, Yan YL, Postlethwait J, Rubin DA (2011) Evolution of the vertebrate pth2 (tip39) gene family and the regulation of PTH type 2 receptor (pth2r) and its endogenous ligand pth2 by hedgehog signaling in zebrafish development. J Endocrinol 211(2):187–200.  https://doi.org/10.1530/JOE-10-0439 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Guerreiro PM, Renfro JL, Power DM, Canario AV (2007) The parathyroid hormone family of peptides: structure, tissue distribution, regulation, and potential functional roles in calcium and phosphate balance in fish. Am J Physiol Regul Integr Comp Physiol 292(2):R679–R696.  https://doi.org/10.1152/ajpregu.00480.2006 CrossRefPubMedGoogle Scholar
  33. 33.
    NCBI (2017) Gene database. https://www.ncbi.nlm.nih.gov/gene/. Accessed 21 Feb 2017
  34. 34.
    NCBI (2017) Protein database. https://www.ncbi.nlm.nih.gov/protein/. Accessed 21 Feb 2017
  35. 35.
    Nathoo AN, Moeller RA, Westlund BA, Hart AC (2001) Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci U S A 98(24):14000–14005.  https://doi.org/10.1073/pnas.241231298 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hummon AB, Richmond TA, Verleyen P, Baggerman G, Huybrechts J, Ewing MA, Vierstraete E, Rodriguez-Zas SL, Schoofs L, Robinson GE, Sweedler JV (2006) From the genome to the proteome: uncovering peptides in the Apis brain. Science 314(5799):647–649.  https://doi.org/10.1126/science.1124128 CrossRefPubMedGoogle Scholar
  37. 37.
    Gustincich S, Batalov S, Beisel KW, Bono H, Carninci P, Fletcher CF, Grimmond S, Hirokawa N, Jarvis ED, Jegla T, Kawasawa Y, Lemieux J, Miki H, Raviola E, Teasdale RD, Tominaga N, Yagi K, Zimmer A, Hayashizaki Y, Okazaki Y, RIKEN GER Group; GSL Members (2003) Analysis of the mouse transcriptome for genes involved in the function of the nervous system. Genome Res 13(6B):1395–1401.  https://doi.org/10.1101/gr.1135303 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shi L, Ko ML, Abbott LC, Ko GY (2012) Identification of Peptide Lv, a novel putative neuropeptide that regulates the expression of L-type voltage-gated calcium channels in photoreceptors. PLoS One 7(8):e43091.  https://doi.org/10.1371/journal.pone.0043091
  39. 39.
    Mirabeau O, Perlas E, Severini C, Audero E, Gascuel O, Possenti R, Birney E, Rosenthal N, Gross C (2007) Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res 17(3):320–327.  https://doi.org/10.1101/gr.5755407 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sonmez K, Zaveri NT, Kerman IA, Burke S, Neal CR, Xie X, Watson SJ, Toll L (2009) Evolutionary sequence modeling for discovery of peptide hormones. PLoS Comput Biol 5(1):e1000258.  https://doi.org/10.1371/journal.pcbi.1000258 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ozawa A, Lindberg I, Roth B, Kroeze WK (2010) Deorphanization of novel peptides and their receptors. AAPS J 12(3):378–384.  https://doi.org/10.1208/s12248-010-9198-9 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    NCBI (2017) Transcriptome Shotgun Assembly database. https://www.ncbi.nlm.nih.gov/genbank/tsa/. Accessed 21 Feb 2017
  43. 43.
    Suarez-Bregua P, Torres-Nunez E, Saxena A, Guerreiro P, Braasch I, Prober DA, Moran P, Cerda-Reverter JM, SJ D, Adrio F, Power DM, Canario AV, Postlethwait JH, Bronner ME, Canestro C, Rotllant J (2017) Pth4, an ancient parathyroid hormone lost in eutherian mammals, reveals a new brain-to-bone signaling pathway. FASEB J 31(2):569–583.  https://doi.org/10.1096/fj.201600815R CrossRefPubMedGoogle Scholar
  44. 44.
    Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285.  https://doi.org/10.1093/nar/gkv1344 CrossRefPubMedGoogle Scholar
  45. 45.
    Dores RM, Baron AJ (2011) Evolution of POMC: origin, phylogeny, posttranslational processing, and the melanocortins. Ann N Y Acad Sci 1220:34–48.  https://doi.org/10.1111/j.1749-6632.2010.05928.x CrossRefPubMedGoogle Scholar
  46. 46.
    Huerta-Cepas J, Serra F, Bork P (2016) ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol 33(6):1635–1638.  https://doi.org/10.1093/molbev/msw046 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    ETE G (2017) GenomeNet ETE3 application. http://www.genome.jp/tools/ete/. Accessed 21 Feb 2017
  48. 48.
    Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786.  https://doi.org/10.1038/nmeth.1701 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Bruce R. Southey
    • 1
  • Elena V. Romanova
    • 2
  • Sandra L. Rodriguez-Zas
    • 1
  • Jonathan V. Sweedler
    • 2
    Email author
  1. 1.Department of Animal SciencesUniversity of Illinois at Urbana—ChampaignUrbanaUSA
  2. 2.Department of Chemistry and Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana—ChampaignUrbanaUSA

Personalised recommendations