Advertisement

Origins, Technological Development, and Applications of Peptidomics

  • Michael SchraderEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1719)

Abstract

Peptidomics is the comprehensive characterization of peptides from biological sources mainly by HPLC and mass spectrometry. Mass spectrometry allows the detection of a multitude of single peptides in complex mixtures. The term first appeared in full papers in the year 2001, after over 100 years of peptide research with a main focus on one or a few specific peptides. Within the last 15 years, this new field has grown to over 1200 publications. Mass spectrometry techniques, in combination with other analytical methods, were developed for the fast and comprehensive analysis of peptides in proteomics and specifically adjusted to implement peptidomics technologies. Although peptidomics is closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. The development of peptidomics is described, including the most important implementations for its technological basis. Different strategies are covered which are applied to several important applications, such as neuropeptidomics and discovery of bioactive peptides or biomarkers. This overview includes links to all other chapters in the book as well as recent developments of separation, mass spectrometric, and data processing technologies. Additionally, some new applications in food and plant peptidomics as well as immunopeptidomics are introduced.

Key words

Peptidomic Peptidome Peptide research Peptide analysis Mass spectrometry 

Notes

Acknowledgments

I am more than grateful for all the extremely valuable comments by Lloyd Fricker that greatly improved my manuscript. Moreover, I would like to thank Manfred Raida for his substantial feedback after critical reading of the manuscript and Peter Verhaert for several important comments.

References

  1. 1.
    Desiderio DM, Yamada S, Tanzer FS et al (1981) High-performance liquid chromatographic and field desorption mass spectrometric measurement of picomole amounts of endogenous neuropeptides in biologic tissue. J Chromatogr 217:437–452PubMedCrossRefGoogle Scholar
  2. 2.
    Verhaert P, Uttenweiler-Joseph S, de Vries M et al (2001) Matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry: an elegant tool for peptidomics. Proteomics 1(1):118–131. https://doi.org/10.1002/1615-9861(200101)1:1<118::AID-PROT118>3.0.CO;2-1Google Scholar
  3. 3.
    Clynen E, Baggerman G, Veelaert D et al (2001) Peptidomics of the pars intercerebralis-corpus cardiacum complex of the migratory locust, Locusta migratoria. Eur J Biochem 268(7):1929–1939PubMedCrossRefGoogle Scholar
  4. 4.
    Schulz-Knappe P, Zucht HD, Heine G et al (2001) Peptidomics: the comprehensive analysis of peptides in complex biological mixtures. Comb Chem High Throughput Screen 4(2):207–217PubMedCrossRefGoogle Scholar
  5. 5.
    Minamino N (2001) Peptidome: the fact-database for endogenous peptides. Tanpakushitsu Kakusan Koso 46(11 Suppl):1510–1517PubMedGoogle Scholar
  6. 6.
    Schrader M, Schulz-Knappe P (2001) Peptidomics technologies for human body fluids. Trends Biotechnol 19(10 Suppl):60.  https://doi.org/10.1016/S0167-7799(01)01800-5 Google Scholar
  7. 7.
    Bergquist J, Ekman R (2001) Future aspects of psychoneuroimmunology—lymphocyte peptides reflecting psychiatric disorders studied by mass spectrometry. Arch Physiol Biochem 109(4):369–371.  https://doi.org/10.1076/apab.109.4.369.4241 PubMedCrossRefGoogle Scholar
  8. 8.
    Verhaert PDEM, Pinkse MWH, Prieto-Conaway MC et al (2008) A short history of insect (neuro)peptidomics—a personal story of the birth and youth of an excellent model for studying peptidome biology. In: Soloviev M, Shaw C, Andren P (eds) Peptidomics: methods and applications. Wiley, Hoboken, pp 25–54Google Scholar
  9. 9.
    Schrader M, Schulz-Knappe P (2000) Peptidomics for human body fluids by combination of chromatography and mass spectrometry. J Biomol Tech 11(1):27–60Google Scholar
  10. 10.
    Schrader M, Schulz-Knappe P, Fricker LD (2014) Historical perspective of peptidomics. EuPA Open Proteom 3:171–182.  https://doi.org/10.1016/j.euprot.2014.02.014 CrossRefGoogle Scholar
  11. 11.
    Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64–71PubMedCrossRefGoogle Scholar
  12. 12.
    Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60(20):2299–2301PubMedCrossRefGoogle Scholar
  13. 13.
    Edman P (1959) Chemistry of amino acids and peptides. Annu Rev Biochem 28:69–96.  https://doi.org/10.1146/annurev.bi.28.070159.000441 PubMedCrossRefGoogle Scholar
  14. 14.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207.  https://doi.org/10.1038/nature01511 PubMedCrossRefGoogle Scholar
  15. 15.
    John H, Staendker L (eds) (2004) Peptide separation and analysis. J Chromatogr B Biomed Sci Appl 803(1):1–172Google Scholar
  16. 16.
    Marko-Varga GA (2005) Proteomics and peptidomics. New technology platforms elucidating biology, 1st edn. Comprehensive analytical chemistry, vol 46. Elsevier, AmsterdamGoogle Scholar
  17. 17.
    Soloviev M, Andrén P, Shaw C (eds) (2008) Peptidomics: methods and applications. Wiley, HobokenGoogle Scholar
  18. 18.
    Soloviev M (2010) Peptidomics. Methods and protocols, Methods in molecular biology, vol 615. Humana Press, New YorkCrossRefGoogle Scholar
  19. 19.
    Hook VY-HH (1998) Proteolytic and cellular mechanisms in prohormone and proprotein processing, Molecular biology intelligence unit, vol 2. Landes, AustinGoogle Scholar
  20. 20.
    Dalbey RE, Sigman DS (2002) Co- and posttranslational proteolysis of proteins. In: The enzymes, vol 22, 3rd edn. Academic, San DiegoGoogle Scholar
  21. 21.
    Rehfeld JF, Bundgaard JR (2010) Cellular peptide hormone synthesis and secretory pathways, Results and problems in cell differentiation, vol 50. Springer, BerlinGoogle Scholar
  22. 22.
    Mbikay M, Seidah NG (2011) Proprotein convertases, Springer protocols, vol 768. Humana Press, New YorkCrossRefGoogle Scholar
  23. 23.
    Favre HA, Powell WH (2014) Nomenclature of organic chemistry: IUPAC recommendations and preferred names 2013. Royal Society of Chemistry, LondonGoogle Scholar
  24. 24.
    Moss GP, Smith PAS, Tavernier D (1995) Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC Recommendations 1995). Pure Appl Chem 67(8–9).  https://doi.org/10.1351/pac199567081307
  25. 25.
    Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol 28(5):325–353PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Banting FG (1926) An address on diabetes and insulin: being the Nobel lecture delivered at Stockholm on September 15th, 1925. Can Med Assoc J 16(3):221–232PubMedPubMedCentralGoogle Scholar
  27. 27.
    Mutt V, Jorpes JE, Magnusson S (1970) Structure of porcine secretin. The amino acid sequence. Eur J Biochem 15(3):513–519PubMedCrossRefGoogle Scholar
  28. 28.
    Sanger F (1959) Chemistry of insulin; determination of the structure of insulin opens the way to greater understanding of life processes. Science 129(3359):1340–1344PubMedCrossRefGoogle Scholar
  29. 29.
    Steiner DF (2011) On the discovery of precursor processing. Methods Mol Biol 768:3–11.  https://doi.org/10.1007/978-1-61779-204-5_1 PubMedCrossRefGoogle Scholar
  30. 30.
    Spackman DH, Stein WH, Moore S (1958) Automatic recording apparatus for use in chromatography of amino acids. Anal Chem 30(7):1190–1206.  https://doi.org/10.1021/ac60139a006 CrossRefGoogle Scholar
  31. 31.
    Mutt V (1980) Chemistry, isolation and purification of gastrointestinal hormones. Biochem Soc Trans 8(1):11–14PubMedCrossRefGoogle Scholar
  32. 32.
    Brown BE, Starratt AN (1975) Isolation of proctolin, a myotropic peptide, from Periplaneta americana. J Insect Physiol 21(11):1879–1881.  https://doi.org/10.1016/0022-1910(75)90257-7 CrossRefGoogle Scholar
  33. 33.
    Tatemoto K, Mutt V (1980) Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature 285(5764):417–418PubMedCrossRefGoogle Scholar
  34. 34.
    Mathe AA, Stenfors C, Brodin E et al (1990) Neuropeptides in brain: effects of microwave irradiation and decapitation. Life Sci 46(4):287–293PubMedCrossRefGoogle Scholar
  35. 35.
    Fricker LD (2010) Analysis of mouse brain peptides using mass spectrometry-based peptidomics: implications for novel functions ranging from non-classical neuropeptides to microproteins. Mol Biosyst 6(8):1355–1365.  https://doi.org/10.1039/c003317k PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Williams DH, Bradley CV, Santikarn S et al (1982) Fast-atom-bombardment mass spectrometry. A new technique for the determination of molecular weights and amino acid sequences of peptides. Biochem J 201(1):105–117PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Winkler HU, Beckey HD (1972) Field desorption mass spectrometry of peptides. Biochem Biophys Res Commun 46(2):391–398PubMedCrossRefGoogle Scholar
  38. 38.
    Macfarlane RD, Torgerson DF (1976) Californium-252 plasma desorption mass spectroscopy. Science 191(4230):920–925PubMedCrossRefGoogle Scholar
  39. 39.
    Gibson BW, Poulter L, Williams DH (1985) A mass spectrometric assay for novel peptides: application to Xenopus laevis skin secretions. Peptides 6(Suppl 3):23–27PubMedCrossRefGoogle Scholar
  40. 40.
    Dass C, Desiderio DM (1987) Fast atom bombardment mass spectrometry analysis of opioid peptides. Anal Biochem 163(1):52–66PubMedCrossRefGoogle Scholar
  41. 41.
    Fohlman J, Peterson PA, Roepstorff P et al (1985) Comparison of 252californium plasma desorption and fast atom bombardment mass spectrometry for analysis of small peptides. Biomed Mass Spectrom 12(8):380–387PubMedCrossRefGoogle Scholar
  42. 42.
    Feistner GJ, Højrup P, Evans CJ et al (1989) Mass spectrometric charting of bovine posterior/intermediate pituitary peptides. Proc Natl Acad Sci U S A 86(16):6013–6017PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Carr SA, Hemling ME, Bean MF et al (1991) Integration of mass spectrometry in analytical biotechnology. Anal Chem 63(24):2802–2824PubMedCrossRefGoogle Scholar
  44. 44.
    Baratte B, Gras-Masse H, Ricart G et al (1991) Isolation and characterization of authentic Phe-Met-Arg-Phe-NH2 and the novel Phe-Thr-Arg-Phe-NH2 peptide from Nereis diversicolor. Eur J Biochem 198(3):627–633PubMedCrossRefGoogle Scholar
  45. 45.
    Regnier FE (1983) High-performance liquid chromatography of biopolymers. Science 222(4621):245–252PubMedCrossRefGoogle Scholar
  46. 46.
    Simpson RJ, Moritz RL, Begg GS et al (1989) Micropreparative procedures for high sensitivity sequencing of peptides and proteins. Anal Biochem 177(2):221–236PubMedCrossRefGoogle Scholar
  47. 47.
    Sigafoos J, Chestnut WG, Merrill BM et al (1993) Novel peptides from adrenomedullary chromaffin vesicles. J Anat 183(Pt 2):253–264PubMedPubMedCentralGoogle Scholar
  48. 48.
    Schulz-Knappe P, Schrader M, Standker L et al (1997) Peptide bank generated by large-scale preparation of circulating human peptides. J Chromatogr A 776(1):125–132PubMedCrossRefGoogle Scholar
  49. 49.
    Raida M, Schulz-Knappe P, Heine G et al (1999) Liquid chromatography and electrospray mass spectrometric mapping of peptides from human plasma filtrate. J Am Soc Mass Spectrom 10(1):45–54.  https://doi.org/10.1016/S1044-0305(98)00117-2 PubMedCrossRefGoogle Scholar
  50. 50.
    Issaq HJ, Chan KC, Blonder J et al (2009) Separation, detection and quantitation of peptides by liquid chromatography and capillary electrochromatography. J Chromatogr A 1216(10):1825–1837.  https://doi.org/10.1016/j.chroma.2008.12.052 PubMedCrossRefGoogle Scholar
  51. 51.
    Finoulst I, Pinkse M, van Dongen W et al. (2011) Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices. J Biomed Biotechnol 20112011, 245291. doi:  https://doi.org/10.1155/2011/245291
  52. 52.
    Wilkins MR, Sanchez JC, Williams KL et al (1996) Current challenges and future applications for protein maps and post-translational vector maps in proteome projects. Electrophoresis 17(5):830–838.  https://doi.org/10.1002/elps.1150170504 PubMedCrossRefGoogle Scholar
  53. 53.
    Cunningham MJ (2000) Genomics and proteomics: the new millennium of drug discovery and development. J Pharmacol Toxicol Methods 44(1):291–300PubMedCrossRefGoogle Scholar
  54. 54.
    Kuhn M, Raida M, Adermann K et al (1993) The circulating bioactive form of human guanylin is a high molecular weight peptide (10.3 kDa). FEBS Lett 318(2):205–209PubMedCrossRefGoogle Scholar
  55. 55.
    Spittaels K, Devreese B, Schoofs L et al (1996) Isolation and identification of a cAMP generating peptide from the flesh fly, Neobellieria bullata (Diptera: Sarcophagidae). Arch Insect Biochem Physiol 31(2):135–147.  https://doi.org/10.1002/(SICI)1520-6327(1996)31:2<135:AID-ARCH2>3.0.CO;2-Z PubMedCrossRefGoogle Scholar
  56. 56.
    Schoofs L, Hamdaoui A, Devreese B et al (1998) The ovary of the desert locust Schistocerca gregaria contains a glycine- and proline-rich peptide that displays sequence similarities with a new class of GPRP proteins from plants. Biochem Biophys Res Commun 243(2):390–394.  https://doi.org/10.1006/bbrc.1998.8104 PubMedCrossRefGoogle Scholar
  57. 57.
    Andren PE, Emmett MR, Caprioli RM (1994) Micro-electrospray. Zeptomole/attomole per microliter sensitivity for peptides. J Am Soc Mass Spectrom 5(9):867–869.  https://doi.org/10.1016/1044-0305(94)87010-1 PubMedCrossRefGoogle Scholar
  58. 58.
    Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68(1):1–8PubMedCrossRefGoogle Scholar
  59. 59.
    Edmondson RD, Russell DH (1996) Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass measurement accuracy by using delayed extraction. J Am Soc Mass Spectrom 7(10):995–1001.  https://doi.org/10.1016/1044-0305(96)00027-X PubMedCrossRefGoogle Scholar
  60. 60.
    Cohen SL, Chait BT (1996) Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal Chem 68(1):31–37PubMedCrossRefGoogle Scholar
  61. 61.
    Garden RW, Moroz LL, Moroz TP et al (1996) Excess salt removal with matrix rinsing. Direct peptide profiling of neurons from marine invertebrates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 31(10):1126–1130.  https://doi.org/10.1002/(SICI)1096-9888(199610)31:10<1126:AID-JMS403>3.0.CO;2-7 PubMedCrossRefGoogle Scholar
  62. 62.
    Escoubas P, Célérier M-L, Nakajima T (1997) High-performance liquid chromatography matrix-assisted laser desorption/ionization time-of-flight mass spectrometry peptide fingerprinting of tarantula venoms in the genusBrachypelma. Chemotaxonomic and biochemical applications. Rapid Commun Mass Spectrom 11(17):1891–1899.  https://doi.org/10.1002/(SICI)1097-0231(199711)11:17<1891:AID-RCM94>3.0.CO;2-X PubMedCrossRefGoogle Scholar
  63. 63.
    Garden RW, Shippy SA, Li L et al (1998) Proteolytic processing of the Aplysia egg-laying hormone prohormone. Proc Natl Acad Sci U S A 95(7):3972–3977PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hsieh S, Dreisewerd K, van der Schors RC et al (1998) Separation and identification of peptides in single neurons by microcolumn liquid chromatography-matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and postsource decay analysis. Anal Chem 70(9):1847–1852PubMedCrossRefGoogle Scholar
  65. 65.
    Shemyakin MM, Ovchinnikov YA, Kiryushkin AA et al (1966) Mass spectrometric determination of the amino-acid sequence of peptides. Nature 211(5047):361–366.  https://doi.org/10.1038/211361a0 PubMedCrossRefGoogle Scholar
  66. 66.
    Agarwal KL, Kenner GW, Sheppard RC (1969) Feline gastrin. An example of peptide sequence analysis by mass spectrometry. J Am Chem Soc 91(11):3096–3097PubMedCrossRefGoogle Scholar
  67. 67.
    Ling N, Rivier J, Burgus R et al (1973) Direct sequence determination of ovine luteinizing hormone releasing factor by mass spectrometry. Biochemistry 12(26):5305–5310PubMedCrossRefGoogle Scholar
  68. 68.
    Wipf HK, Irving P, McCamish M et al (1973) Mass spectrometric studies of peptides. V. Determination of amino acid sequences in peptide mixtures by mass spectrometry. J Am Chem Soc 95(10):3369–3375.  https://doi.org/10.1021/ja00791a048 CrossRefGoogle Scholar
  69. 69.
    Biemann K, Martin SA (1987) Mass spectrometric determination of the amino acid sequence of peptides and proteins. Mass Spectrom Rev 6(1):1–75.  https://doi.org/10.1002/mas.1280060102 CrossRefGoogle Scholar
  70. 70.
    Papayannopoulos IA (1995) The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrom Rev 14:49–73.  https://doi.org/10.1002/mas.1280140104 CrossRefGoogle Scholar
  71. 71.
    Paizs B, Suhai S (2005) Fragmentation pathways of protonated peptides. Mass Spectrom Rev 24(4):508–548.  https://doi.org/10.1002/mas.20024 PubMedCrossRefGoogle Scholar
  72. 72.
    Eriksson U, Andren PE, Caprioli RM et al (1996) Reversed-phase high-performance liquid chromatography combined with tandem mass spectrometry in studies of a substance P-converting enzyme from human cerebrospinal fluid. J Chromatogr A 743(1):213–220PubMedCrossRefGoogle Scholar
  73. 73.
    Che FY, Yan L, Li H et al (2001) Identification of peptides from brain and pituitary of Cpe(fat)/Cpe(fat) mice. Proc Natl Acad Sci U S A 98(17):9971–9976.  https://doi.org/10.1073/pnas.161542198 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Predel R, Kellner R, Baggerman G et al (2000) Identification of novel periviscerokinins from single neurohaemal release sites in insects MS/MS fragmentation complemented by Edman degradation. Eur J Biochem 267(12):3869–3873PubMedCrossRefGoogle Scholar
  75. 75.
    Carr SA, Annan RS (2001) Overview of peptide and protein analysis by mass spectrometry. Curr Protoc Protein Sci. Chapter 16:Unit 16.1.  https://doi.org/10.1002/0471140864.ps1601s04
  76. 76.
    Apweiler R, Bairoch A, Wu CH (2004) Protein sequence databases. Curr Opin Chem Biol 8(1):76–80.  https://doi.org/10.1016/j.cbpa.2003.12.004 PubMedCrossRefGoogle Scholar
  77. 77.
    Yates JR III, Eng JK, Clauser KR et al (1996) Search of sequence databases with uninterpreted high-energy collision-induced dissociation spectra of peptides. J Am Soc Mass Spectrom 7(11):1089–1098.  https://doi.org/10.1016/S1044-0305(96)00079-7 PubMedCrossRefGoogle Scholar
  78. 78.
    Clauser KR, Baker P, Burlingame AL (1999) Role of accurate mass measurement (+/− 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem 71(14):2871–2882PubMedCrossRefGoogle Scholar
  79. 79.
    Perkins DN, Pappin DJC, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567.  https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551:AID-ELPS3551>3.0.CO;2-2 PubMedCrossRefGoogle Scholar
  80. 80.
    Dawkins BG, Arpino PJ, McLafferty FW (1978) Polypeptide sequencing by liquid chromatography mass spectrometry. Biomed Mass Spectrom 5(1):1–6.  https://doi.org/10.1002/bms.1200050102 PubMedCrossRefGoogle Scholar
  81. 81.
    Priddle JD, Rose K, Offord RE (1976) The separation and sequencing of permethylated peptides by mass spectrometry directly coupled to gas-liquid chromatography. Biochem J 157(3):777–780PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hunt DF, Yates JR, Shabanowitz J et al (1986) Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A 83(17):6233–6237PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Hunt DF, Henderson RA, Shabanowitz J et al (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255(5049):1261–1263PubMedCrossRefGoogle Scholar
  84. 84.
    Hunt DF, Michel H, Dickinson TA et al (1992) Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. Science 256(5065):1817–1820PubMedCrossRefGoogle Scholar
  85. 85.
    Chicz RM, Urban RG, Lane WS et al (1992) Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 358(6389):764–768.  https://doi.org/10.1038/358764a0 PubMedCrossRefGoogle Scholar
  86. 86.
    Emmett APE, Caprioli RM (1995) Specific molecular mass detection of endogenously released neuropeptides using in vivo microdialysis/mass spectrometry. J Neurosci Methods 62(1-2):141–147PubMedCrossRefGoogle Scholar
  87. 87.
    Heine G, Raida M, Forssmann WG (1997) Mapping of peptides and protein fragments in human urine using liquid chromatography-mass spectrometry. J Chromatogr A 776(1):117–124PubMedCrossRefGoogle Scholar
  88. 88.
    Jurgens M, Schrader M, Raida M et al (1998) Multi-dimensional mapping of human blood peptides by mass spectrometry. J Biomol Tech 9(4):24–30Google Scholar
  89. 89.
    Stark M, Danielsson O, Griffiths WJ et al (2001) Peptide repertoire of human cerebrospinal fluid: novel proteolytic fragments of neuroendocrine proteins. J Chromatogr B Biomed Sci Appl 754(2):357–367PubMedCrossRefGoogle Scholar
  90. 90.
    Heine G, Zucht HD, Schuhmann MU et al (2002) High-resolution peptide mapping of cerebrospinal fluid: a novel concept for diagnosis and research in central nervous system diseases. J Chromatogr B Analyt Technol Biomed Life Sci 782(1-2):353–361PubMedCrossRefGoogle Scholar
  91. 91.
    Fricker LD, McKinzie AA, Sun J et al (2000) Identification and characterization of proSAAS, a granin-like neuroendocrine peptide precursor that inhibits prohormone processing. J Neurosci 20(2):639–648PubMedGoogle Scholar
  92. 92.
    Licklider LJ, Thoreen CC, Peng J et al (2002) Automation of nanoscale microcapillary liquid chromatography-tandem mass spectrometry with a vented column. Anal Chem 74(13):3076–3083PubMedCrossRefGoogle Scholar
  93. 93.
    Perkins JR, Smith B, Gallagher RT et al (1993) Application of electrospray mass spectrometry and matrix-assisted laser desorption ionization time-of-flight mass spectrometry for molecular weight assignment of peptides in complex mixtures. J Am Soc Mass Spectrom 4(8):670–684.  https://doi.org/10.1016/1044-0305(93)85032-S PubMedCrossRefGoogle Scholar
  94. 94.
    van Golen FA, Li KW, de Lange RP et al (1995) Mutually exclusive neuronal expression of peptides encoded by the FMRFa gene underlies a differential control of copulation in Lymnaea. J Biol Chem 270(47):28487–28493PubMedCrossRefGoogle Scholar
  95. 95.
    Jimenez CR, Li KW, Dreisewerd K et al (1998) Direct mass spectrometric peptide profiling and sequencing of single neurons reveals differential peptide patterns in a small neuronal network. Biochemistry 37(7):2070–2076.  https://doi.org/10.1021/bi971848b PubMedCrossRefGoogle Scholar
  96. 96.
    Li L, Garden RW, Sweedler JV (2000) Single-cell MALDI: a new tool for direct peptide profiling. Trends Biotechnol 18(4):151–160PubMedCrossRefGoogle Scholar
  97. 97.
    Rubakhin SS, Garden RW, Fuller RR et al (2000) Measuring the peptides in individual organelles with mass spectrometry. Nat Biotechnol 18(2):172–175.  https://doi.org/10.1038/72622 PubMedCrossRefGoogle Scholar
  98. 98.
    Schrader M, Jurgens M, Hess R et al (1997) Matrix-assisted laser desorption/ionisation mass spectrometry guided purification of human guanylin from blood ultrafiltrate. J Chromatogr A 776(1):139–145PubMedCrossRefGoogle Scholar
  99. 99.
    Floyd PD, Li L, Moroz TP et al (1999) Characterization of peptides from Aplysia using microbore liquid chromatography with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry guided purification. J Chromatogr A 830(1):105–113PubMedCrossRefGoogle Scholar
  100. 100.
    Richter R, Schulz-Knappe P, Schrader M et al (1999) Composition of the peptide fraction in human blood plasma: database of circulating human peptides. J Chromatogr B Biomed Sci Appl 726(1-2):25–35PubMedCrossRefGoogle Scholar
  101. 101.
    Escoubas P, Chamot-Rooke J, Stöcklin R et al (1999) A comparison of matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography electrospray ionization mass spectrometry methods for the analysis of crude tarantula venoms in the Pterinochilus group. Rapid Commun Mass Spectrom 13(18):1861–1868.  https://doi.org/10.1002/(SICI)1097-0231(19990930)13:18<1861:AID-RCM730>3.0.CO;2-7 PubMedCrossRefGoogle Scholar
  102. 102.
    Uttenweiler-Joseph S, Moniatte M, Lagueux M et al (1998) Differential display of peptides induced during the immune response of Drosophila: a matrix-assisted laser desorption ionization time-of-flight mass spectrometry study. Proc Natl Acad Sci U S A 95(19):11342–11347PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Jimenez CR, Li KW, Dreisewerd K et al (1997) Pattern changes of pituitary peptides in rat after salt-loading as detected by means of direct, semiquantitative mass spectrometric profiling. Proc Natl Acad Sci U S A 94(17):9481–9486PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zucht HD, Grabowsky J, Schrader M et al (1998) Human beta-defensin-1: a urinary peptide present in variant molecular forms and its putative functional implication. Eur J Med Res 3(7):315–323PubMedGoogle Scholar
  105. 105.
    Neitz S, Jurgens M, Kellmann M et al (2001) Screening for disulfide-rich peptides in biological sources by carboxyamidomethylation in combination with differential matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15(17):1586–1592.  https://doi.org/10.1002/rcm.413 PubMedCrossRefGoogle Scholar
  106. 106.
    Baggerman G, Verleyen P, Clynen E et al (2004) Peptidomics. J Chromatogr B Analyt Technol Biomed Life Sci 803(1):3–16.  https://doi.org/10.1016/j.jchromb.2003.07.019 PubMedCrossRefGoogle Scholar
  107. 107.
    Skold K, Svensson M, Kaplan A et al (2002) A neuroproteomic approach to targeting neuropeptides in the brain. Proteomics 2(4):447–454.  https://doi.org/10.1002/1615-9861(200204)2:4<447:AID-PROT447>3.0.CO;2-A PubMedCrossRefGoogle Scholar
  108. 108.
    Tammen H, Schulte I, Hess R et al (2005) Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics 5(13):3414–3422.  https://doi.org/10.1002/pmic.200401219 PubMedCrossRefGoogle Scholar
  109. 109.
    Munch J, Standker L, Adermann K et al (2007) Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell 129(2):263–275.  https://doi.org/10.1016/j.cell.2007.02.042 PubMedCrossRefGoogle Scholar
  110. 110.
    Samir P, Link AJ (2011) Analyzing the cryptome: uncovering secret sequences. AAPS J 13(2):152–158.  https://doi.org/10.1208/s12248-011-9252-2 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Osaki T, Sasaki K, Minamino N (2011) Peptidomics-based discovery of an antimicrobial peptide derived from insulin-like growth factor-binding protein 5. J Proteome Res 10(4):1870–1880.  https://doi.org/10.1021/pr101114a PubMedCrossRefGoogle Scholar
  112. 112.
    Guerrero A, Dallas DC, Contreras S et al (2014) Mechanistic peptidomics: factors that dictate specificity in the formation of endogenous peptides in human milk. Mol Cell Proteomics 13(12):3343–3351.  https://doi.org/10.1074/mcp.M113.036194 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Munch J, Standker L, Forssmann W-G et al (2014) Discovery of modulators of HIV-1 infection from the human peptidome. Nat Rev Microbiol 12(10):715–722.  https://doi.org/10.1038/nrmicro3312 PubMedCrossRefGoogle Scholar
  114. 114.
    Zirafi O, Kim K-A, Standker L et al (2015) Discovery and characterization of an endogenous CXCR4 antagonist. Cell Rep 11(5):737–747.  https://doi.org/10.1016/j.celrep.2015.03.061 PubMedCrossRefGoogle Scholar
  115. 115.
    Rehfeld JF, Goetze JP (2003) The posttranslational phase of gene expression: new possibilities in molecular diagnosis. Curr Mol Med 3(1):25–38PubMedCrossRefGoogle Scholar
  116. 116.
    Rogers LD, Overall CM (2013) Proteolytic post-translational modification of proteins: proteomic tools and methodology. Mol Cell Proteomics 12(12):3532–3542.  https://doi.org/10.1074/mcp.M113.031310 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Fortelny N, Cox JH, Kappelhoff R et al (2014) Network analyses reveal pervasive functional regulation between proteases in the human protease web. PLoS Biol 12(5):e1001869.  https://doi.org/10.1371/journal.pbio.1001869 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Tsuchiya T, Osaki T, Minamino N et al (2015) Peptidomics for studying limited proteolysis. J Proteome Res 14(11):4921–4931.  https://doi.org/10.1021/acs.jproteome.5b00820 PubMedCrossRefGoogle Scholar
  119. 119.
    Yu Y, Prassas I, Muytjens CMJ et al (2017) Proteomic and peptidomic analysis of human sweat with emphasis on proteolysis. J Proteomics 155:40–48.  https://doi.org/10.1016/j.jprot.2017.01.005 PubMedCrossRefGoogle Scholar
  120. 120.
    Jimenez CR, Spijker S, de Schipper S et al (2006) Peptidomics of a single identified neuron reveals diversity of multiple neuropeptides with convergent actions on cellular excitability. J Neurosci 26(2):518–529.  https://doi.org/10.1523/JNEUROSCI.2566-05.2006 PubMedCrossRefGoogle Scholar
  121. 121.
    Neupert S, Johard HAD, Nassel DR et al (2007) Single-cell peptidomics of drosophila melanogaster neurons identified by Gal4-driven fluorescence. Anal Chem 79(10):3690–3694.  https://doi.org/10.1021/ac062411p PubMedCrossRefGoogle Scholar
  122. 122.
    Neupert S, Rubakhin SS, Sweedler JV (2012) Targeted single-cell microchemical analysis: MS-based peptidomics of individual paraformaldehyde-fixed and immunolabeled neurons. Chem Biol 19(8):1010–1019.  https://doi.org/10.1016/j.chembiol.2012.05.023 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Che F-Y, Fricker LD (2002) Quantitation of neuropeptides in Cpe(fat)/Cpe(fat) mice using differential isotopic tags and mass spectrometry. Anal Chem 74(13):3190–3198PubMedCrossRefGoogle Scholar
  124. 124.
    Che FY, Eipper BA, Mains RE et al (2003) Quantitative peptidomics of pituitary glands from mice deficient in copper transport. Cell Mol Biol (Noisy-le-Grand) 49(5):713–722Google Scholar
  125. 125.
    Carr S, Aebersold R, Baldwin M et al (2004) The need for guidelines in publication of peptide and protein identification data: Working Group on Publication Guidelines for Peptide and Protein Identification Data. Mol Cell Proteomics 3(6):531–533.  https://doi.org/10.1074/mcp.T400006-MCP200 PubMedCrossRefGoogle Scholar
  126. 126.
    Boonen K, Landuyt B, Baggerman G et al (2008) Peptidomics: the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis. J Sep Sci 31(3):427–445.  https://doi.org/10.1002/jssc.200700450 PubMedCrossRefGoogle Scholar
  127. 127.
    Akhtar MN, Southey BR, Andren PE et al (2012) Evaluation of database search programs for accurate detection of neuropeptides in tandem mass spectrometry experiments. J Proteome Res 11(12):6044–6055.  https://doi.org/10.1021/pr3007123 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Hayakawa E, Menschaert G, de Bock PJ et al (2013) Improving the identification rate of endogenous peptides using electron transfer dissociation and collision-induced dissociation. J Proteome Res 12(12):5410–5421.  https://doi.org/10.1021/pr400446z PubMedCrossRefGoogle Scholar
  129. 129.
    Deutsch EW, Overall CM, van Eyk JE et al (2016) Human proteome project mass spectrometry data interpretation guidelines 2.1. J Proteome Res 15(11):3961–3970.  https://doi.org/10.1021/acs.jproteome.6b00392 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Webb-Robertson BJ, Cannon WR, Oehmen CS et al (2010) A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics. Bioinformatics 26(13):1677–1683PubMedCrossRefGoogle Scholar
  131. 131.
    Samgina TY, Vorontsov EA, Gorshkov VA et al (2014) Mass spectrometric de novo sequencing of natural non-tryptic peptides: comparing peculiarities of collision-induced dissociation (CID) and high energy collision dissociation (HCD). Rapid Commun Mass Spectrom 28(23):2595–2604.  https://doi.org/10.1002/rcm.7049 PubMedCrossRefGoogle Scholar
  132. 132.
    Azkargorta M, Soria J, Ojeda C et al (2015) Human basal tear peptidome characterization by CID, HCD, and ETD followed by in silico and in vitro analyses for antimicrobial peptide identification. J Proteome Res 14(6):2649–2658.  https://doi.org/10.1021/acs.jproteome.5b00179 PubMedCrossRefGoogle Scholar
  133. 133.
    Samgina TY, Tolpina MD, Trebse P et al (2016) LTQ Orbitrap Velos in routine de novo sequencing of non-tryptic skin peptides from the frog Rana latastei with traditional and reliable manual spectra interpretation. Rapid Commun Mass Spectrom 30(2):265–276PubMedCrossRefGoogle Scholar
  134. 134.
    Cottrell JS (2011) Protein identification using MS/MS data. J Proteomics 74(10):1842–1851.  https://doi.org/10.1016/j.jprot.2011.05.014 PubMedCrossRefGoogle Scholar
  135. 135.
    Kim M-S, Zhong J, Pandey A (2016) Common errors in mass spectrometry-based analysis of post-translational modifications. Proteomics 16(5):700–714.  https://doi.org/10.1002/pmic.201500355 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Badock V, Raida M, Adermann K et al (1998) Distinction between the three disulfide isomers of guanylin 99-115 by low-energy collision-induced dissociation. Rapid Commun Mass Spectrom 12(23):1952–1956.  https://doi.org/10.1002/(SICI)1097-0231(19981215)12:23<1952:AID-RCM420>3.0.CO;2-N PubMedCrossRefGoogle Scholar
  137. 137.
    Samgina TY, Vorontsov EA, Gorshkov VA et al (2011) Novel cysteine tags for the sequencing of non-tryptic disulfide peptides of anurans: ESI-MS study of fragmentation efficiency. J Am Soc Mass Spectrom 22(12):2246–2255.  https://doi.org/10.1007/s13361-011-0247-0 PubMedCrossRefGoogle Scholar
  138. 138.
    Lee M, Lee Y, Kang M et al (2011) Disulfide bond cleavage in TEMPO-free radical initiated peptide sequencing mass spectrometry. J Mass Spectrom 46(8):830–839.  https://doi.org/10.1002/jms.1955 PubMedCrossRefGoogle Scholar
  139. 139.
    Bhatia S, Kil YJ, Ueberheide B et al (2012) Constrained de novo sequencing of conotoxins. J Proteome Res 11(8):4191–4200.  https://doi.org/10.1021/pr300312h PubMedCrossRefGoogle Scholar
  140. 140.
    Bhattacharyya M, Gupta K, Gowd KH et al (2013) Rapid mass spectrometric determination of disulfide connectivity in peptides and proteins. Mol Biosyst 9(6):1340–1350.  https://doi.org/10.1039/c3mb25534d PubMedCrossRefGoogle Scholar
  141. 141.
    Fricker LD (2015) Limitations of mass spectrometry-based peptidomic approaches. J Am Soc Mass Spectrom 26(12):1981–1991.  https://doi.org/10.1007/s13361-015-1231-x PubMedCrossRefGoogle Scholar
  142. 142.
    An Z, Chen Y, Koomen JM et al (2012) A mass spectrometry-based method to screen for alpha-amidated peptides. Proteomics 12(2):173–182.  https://doi.org/10.1002/pmic.201100327 PubMedCrossRefGoogle Scholar
  143. 143.
    Sasaki K, Osaki T, Minamino N (2013) Large-scale identification of endogenous secretory peptides using electron transfer dissociation mass spectrometry. Mol Cell Proteomics 12(3):700–709.  https://doi.org/10.1074/mcp.M112.017400 PubMedCrossRefGoogle Scholar
  144. 144.
    Ianzer D, Konno K, Marques-Porto R et al (2004) Identification of five new bradykinin potentiating peptides (BPPs) from Bothrops jararaca crude venom by using electrospray ionization tandem mass spectrometry after a two-step liquid chromatography. Peptides 25(7):1085–1092.  https://doi.org/10.1016/j.peptides.2004.04.006 PubMedCrossRefGoogle Scholar
  145. 145.
    Chen T, Scott C, Tang L et al (2005) The structural organization of aurein precursor cDNAs from the skin secretion of the Australian green and golden bell frog, Litoria aurea. Regul Pept 128(1):75–83.  https://doi.org/10.1016/j.regpep.2004.12.022 PubMedCrossRefGoogle Scholar
  146. 146.
    Ji Y, Bachschmid MM, Costello CE et al (2016) S- to N-palmitoyl transfer during proteomic sample preparation. J Am Soc Mass Spectrom 27(4):677–685.  https://doi.org/10.1007/s13361-015-1319-3 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    John H, Walden M, Schafer S et al (2004) Analytical procedures for quantification of peptides in pharmaceutical research by liquid chromatography-mass spectrometry. Anal Bioanal Chem 378(4):883–897.  https://doi.org/10.1007/s00216-003-2298-y PubMedCrossRefGoogle Scholar
  148. 148.
    Gardner MS, Rowland MD, Siu AY et al (2009) A comprehensive defensin assay for saliva. Anal Chem 81(2):557–566.  https://doi.org/10.1021/ac801609r PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Che F-Y, Fricker LD (2005) Quantitative peptidomics of mouse pituitary: comparison of different stable isotopic tags. J Mass Spectrom 40(2):238–249.  https://doi.org/10.1002/jms.743 PubMedCrossRefGoogle Scholar
  150. 150.
    Mesmin C, Dubois M, Becher F et al (2010) Liquid chromatography/tandem mass spectrometry assay for the absolute quantification of the expected circulating apelin peptides in human plasma. Rapid Commun Mass Spectrom 24(19):2875–2884.  https://doi.org/10.1002/rcm.4718 PubMedCrossRefGoogle Scholar
  151. 151.
    Fricker LD, Lim J, Pan H et al (2006) Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom Rev 25(2):327–344.  https://doi.org/10.1002/mas.20079 PubMedCrossRefGoogle Scholar
  152. 152.
    Berezniuk I, Sironi JJ, Wardman J et al (2013) Quantitative peptidomics of Purkinje cell degeneration mice. PLoS One 8(4):e60981.  https://doi.org/10.1371/journal.pone.0060981 PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Verdonck R, de Haes W, Cardoen D et al (2016) Fast and reliable quantitative peptidomics with labelpepmatch. J Proteome Res 15(3):1080–1089.  https://doi.org/10.1021/acs.jproteome.5b00845 PubMedCrossRefGoogle Scholar
  154. 154.
    Baggerman G, Cerstiaens A, de Loof A et al (2002) Peptidomics of the larval Drosophila melanogaster central nervous system. J Biol Chem 277(43):40368–40374.  https://doi.org/10.1074/jbc.M206257200 PubMedCrossRefGoogle Scholar
  155. 155.
    Predel R, Wegener C, Russell WK et al (2004) Peptidomics of CNS-associated neurohemal systems of adult Drosophila melanogaster: a mass spectrometric survey of peptides from individual flies. J Comp Neurol 474(3):379–392.  https://doi.org/10.1002/cne.20145 PubMedCrossRefGoogle Scholar
  156. 156.
    Conlon JM, Kim JB, Johansson A et al (2002) Comparative peptidomics of the endocrine pancreas: islet hormones from the clawed frog Xenopus laevis and the red-bellied newt Cynops pyrrhogaster. J Endocrinol 175(3):769–777PubMedCrossRefGoogle Scholar
  157. 157.
    Svensson M, Skold K, Svenningsson P et al (2003) Peptidomics-based discovery of novel neuropeptides. J Proteome Res 2(2):213–219PubMedCrossRefGoogle Scholar
  158. 158.
    Sasaki K, Sato K, Akiyama Y et al (2002) Peptidomics-based approach reveals the secretion of the 29-residue COOH-terminal fragment of the putative tumor suppressor protein DMBT1 from pancreatic adenocarcinoma cell lines. Cancer Res 62(17):4894–4898PubMedGoogle Scholar
  159. 159.
    Huybrechts J, Nusbaum MP, Bosch LV et al (2003) Neuropeptidomic analysis of the brain and thoracic ganglion from the Jonah crab, Cancer borealis. Biochem Biophys Res Commun 308(3):535–544PubMedCrossRefGoogle Scholar
  160. 160.
    de Haes W, van Sinay E, Detienne G et al (2015) Functional neuropeptidomics in invertebrates. Biochim Biophys Acta 1854(7):812–826.  https://doi.org/10.1016/j.bbapap.2014.12.011 PubMedCrossRefGoogle Scholar
  161. 161.
    Romanova EV, Sweedler JV (2015) Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol Sci 36(9):579–586.  https://doi.org/10.1016/j.tips.2015.05.009 PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    OuYang C, Liang Z, Li L (2015) Mass spectrometric analysis of spatio-temporal dynamics of crustacean neuropeptides. Biochim Biophys Acta 1854(7):798–811.  https://doi.org/10.1016/j.bbapap.2014.10.023 PubMedCrossRefGoogle Scholar
  163. 163.
    Hook V, Bandeira N (2015) Neuropeptidomics mass spectrometry reveals signaling networks generated by distinct protease pathways in human systems. J Am Soc Mass Spectrom 26(12):1970–1980.  https://doi.org/10.1007/s13361-015-1251-6 PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Lee JE (2016) Neuropeptidomics: mass spectrometry-based identification and quantitation of neuropeptides. Genomics Inform 14(1):12–19.  https://doi.org/10.5808/GI.2016.14.1.12 PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    van Vaerenbergh M, Cardoen D, Formesyn EM et al (2013) Extending the honey bee venome with the antimicrobial peptide apidaecin and a protein resembling wasp antigen 5. Insect Mol Biol 22(2):199–210.  https://doi.org/10.1111/imb.12013 PubMedCrossRefGoogle Scholar
  166. 166.
    Sturm S, Ramesh D, Brockmann A et al (2016) Agatoxin-like peptides in the neuroendocrine system of the honey bee and other insects. J Proteomics 132:77–84.  https://doi.org/10.1016/j.jprot.2015.11.021 PubMedCrossRefGoogle Scholar
  167. 167.
    Cologna CT, Cardoso JS, Jourdan E et al (2013) Peptidomic comparison and characterization of the major components of the venom of the giant ant Dinoponera quadriceps collected in four different areas of Brazil. J Proteomics 94:413–422.  https://doi.org/10.1016/j.jprot.2013.10.017 PubMedCrossRefGoogle Scholar
  168. 168.
    Aili SR, Touchard A, Koh JMS et al (2016) Comparisons of protein and peptide complexity in poneroid and formicoid ant venoms. J Proteome Res 15(9):3039–3054.  https://doi.org/10.1021/acs.jproteome.6b00182 PubMedCrossRefGoogle Scholar
  169. 169.
    Favreau P, Menin L, Michalet S, Perret F, Cheneval O, Stocklin M, Bulet P, Stocklin R (2006) Mass spectrometry strategies for venom mapping and peptide sequencing from crude venoms: case applications with single arthropod specimen. Toxicon 47(6):676–687PubMedCrossRefGoogle Scholar
  170. 170.
    Escoubas P, Quinton L, Nicholson GM (2008) Venomics: unravelling the complexity of animal venoms with mass spectrometry. J Mass Spectrom 43(3):279–295.  https://doi.org/10.1002/jms.1389 PubMedCrossRefGoogle Scholar
  171. 171.
    Schwartz EF, Mourao CB, Moreira KG et al (2012) Arthropod venoms: a vast arsenal of insecticidal neuropeptides. Biopolymers 98(4):385–405PubMedCrossRefGoogle Scholar
  172. 172.
    Hakim MA, Yang S, Lai R (2015) Centipede venoms and their components: resources for potential therapeutic applications. Toxins (Basel) 7(11):4832–4851.  https://doi.org/10.3390/toxins7114832 CrossRefGoogle Scholar
  173. 173.
    Kuzmenkov AI, Sachkova MY, Kovalchuk SI et al (2016) Lachesana tarabaevi, an expert in membrane-active toxins. Biochem J 473(16):2495–2506.  https://doi.org/10.1042/BCJ20160436 PubMedCrossRefGoogle Scholar
  174. 174.
    Evaristo GPC, Verhaert PDEM, Pinkse MWH (2012) PTM-driven differential peptide display: survey of peptides containing inter/intra-molecular disulfide bridges in frog venoms. J Proteomics 77:215–224.  https://doi.org/10.1016/j.jprot.2012.09.001 PubMedCrossRefGoogle Scholar
  175. 175.
    Calvete JJ, Schrader M, Raida M et al (1997) The disulphide bond pattern of bitistatin, a disintegrin isolated from the venom of the viper Bitis arietans. FEBS Lett 416(2):197–202PubMedCrossRefGoogle Scholar
  176. 176.
    Munawar A, Trusch M, Georgieva D et al (2011) Venom peptide analysis of Vipera ammodytes meridionalis (Viperinae) and Bothrops jararacussu (Crotalinae) demonstrates subfamily-specificity of the peptidome in the family Viperidae. Mol Biosyst 7(12):3298–3307.  https://doi.org/10.1039/c1mb05309d PubMedCrossRefGoogle Scholar
  177. 177.
    Tashima AK, Zelanis A, Kitano ES et al (2012) Peptidomics of three Bothrops snake venoms: insights into the molecular diversification of proteomes and peptidomes. Mol Cell Proteomics 11(11):1245–1262.  https://doi.org/10.1074/mcp.M112.019331 PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Dutertre S, Jin A-H, Kaas Q et al (2013) Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol Cell Proteomics 12(2):312–329.  https://doi.org/10.1074/mcp.M112.021469 PubMedCrossRefGoogle Scholar
  179. 179.
    Rodriguez AM, Dutertre S, Lewis RJ et al (2015) Intraspecific variations in Conus purpurascens injected venom using LC/MALDI-TOF-MS and LC-ESI-TripleTOF-MS. Anal Bioanal Chem 407(20):6105–6116.  https://doi.org/10.1007/s00216-015-8787-y PubMedCrossRefGoogle Scholar
  180. 180.
    Frazao B, Vasconcelos V, Antunes A (2012) Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar Drugs 10(8):1812–1851.  https://doi.org/10.3390/md10081812 PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Rodriguez AA, Standker L, Zaharenko AJ et al (2012) Combining multidimensional liquid chromatography and MALDI-TOF-MS for the fingerprint analysis of secreted peptides from the unexplored sea anemone species Phymanthus crucifer. J Chromatogr B Analyt Technol Biomed Life Sci 903:30–39.  https://doi.org/10.1016/j.jchromb.2012.06.034 PubMedCrossRefGoogle Scholar
  182. 182.
    Wong JWH, Ho SYW, Hogg PJ (2011) Disulfide bond acquisition through eukaryotic protein evolution. Mol Biol Evol 28(1):327–334.  https://doi.org/10.1093/molbev/msq194 PubMedCrossRefGoogle Scholar
  183. 183.
    Vignon-Zellweger N, Heiden S, Miyauchi T et al (2012) Endothelin and endothelin receptors in the renal and cardiovascular systems. Life Sci 91(13–14):490–500.  https://doi.org/10.1016/j.lfs.2012.03.026 PubMedCrossRefGoogle Scholar
  184. 184.
    Gaggin HK, Januzzi JL Jr (2014) Natriuretic peptides in heart failure and acute coronary syndrome. Clin Lab Med 34(1):43–58., vi.  https://doi.org/10.1016/j.cll.2013.11.007 PubMedCrossRefGoogle Scholar
  185. 185.
    Schulz-Knappe P, Magert HJ, Dewald B et al (1996) HCC-1, a novel chemokine from human plasma. J Exp Med 183(1):295–299PubMedCrossRefGoogle Scholar
  186. 186.
    Thiele S, Rosenkilde MM (2014) Interaction of chemokines with their receptors—from initial chemokine binding to receptor activating steps. Curr Med Chem 21(31):3594–3614PubMedCrossRefGoogle Scholar
  187. 187.
    Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184PubMedCrossRefGoogle Scholar
  188. 188.
    Trindade F, Amado F, Pinto da Costa J et al (2015) Salivary peptidomic as a tool to disclose new potential antimicrobial peptides. J Proteomics 115:49–57.  https://doi.org/10.1016/j.jprot.2014.12.004 PubMedCrossRefGoogle Scholar
  189. 189.
    Conlon JM (2015) Host-defense peptides of the skin with therapeutic potential: From hagfish to human. Peptides 67:29–38.  https://doi.org/10.1016/j.peptides.2015.03.005 PubMedCrossRefGoogle Scholar
  190. 190.
    Tam JP, Wang S, Wong KH et al (2015) Antimicrobial Peptides from Plants. Pharmaceuticals (Basel) 8(4):711–757.  https://doi.org/10.3390/ph8040711 CrossRefGoogle Scholar
  191. 191.
    Lavergne V, Alewood PF, Mobli M et al (2015) The structural universe of disulfide-rich venom peptides. In: King GF (ed) Venoms to drugs. Venom as a source for the development of human therapeutics. Royal Society of Chemistry, Cambridge, pp 37–79CrossRefGoogle Scholar
  192. 192.
    Sillard R, Jornvall H, Carlquist M et al (1993) Chemical assay for cyst(e)ine-rich peptides detects a novel intestinal peptide ZF-1, homologous to a single zinc-finger motif. Eur J Biochem 211(1–2):377–380PubMedCrossRefGoogle Scholar
  193. 193.
    Krause A, Neitz S, Magert HJ et al (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480(2–3):147–150PubMedCrossRefGoogle Scholar
  194. 194.
    Ganz T (2011) Hepcidin and iron regulation, 10 years later. Blood 117(17):4425–4433.  https://doi.org/10.1182/blood-2011-01-258467 PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Lefebvre T, Dessendier N, Houamel D et al (2015) LC-MS/MS method for hepcidin-25 measurement in human and mouse serum: clinical and research implications in iron disorders. Clin Chem Lab Med 53(10):1557–1567.  https://doi.org/10.1515/cclm-2014-1093 PubMedCrossRefGoogle Scholar
  196. 196.
    Swensen AC, Finnell JG, Matias C et al (2016) Whole blood and urine bioactive Hepcidin-25 determination using liquid chromatography mass spectrometry. Anal Biochem 517:23–30.  https://doi.org/10.1016/j.ab.2016.10.023 PubMedCrossRefGoogle Scholar
  197. 197.
    Yu X, Khani A, Ye X et al (2015) High-efficiency recognition and identification of disulfide bonded peptides in rat neuropeptidome using targeted electron transfer dissociation tandem mass spectrometry. Anal Chem 87(23):11646–11651.  https://doi.org/10.1021/ac504872z PubMedCrossRefGoogle Scholar
  198. 198.
    Yamaguchi H, Sasaki K, Satomi Y et al (2007) Peptidomic identification and biological validation of neuroendocrine regulatory peptide-1 and -2. J Biol Chem 282(36):26354–26360.  https://doi.org/10.1074/jbc.M701665200 PubMedCrossRefGoogle Scholar
  199. 199.
    Hook V, Funkelstein L, Lu D et al (2008) Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu Rev Pharmacol Toxicol 48:393–423.  https://doi.org/10.1146/annurev.pharmtox.48.113006.094812 PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Sapio MR, Fricker LD (2014) Carboxypeptidases in disease: insights from peptidomic studies. Proteomics Clin Appl 8(5-6):327–337.  https://doi.org/10.1002/prca.201300090 PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Morgan DJ, Wei S, Gomes I et al (2010) The propeptide precursor proSAAS is involved in fetal neuropeptide processing and body weight regulation. J Neurochem 113(5):1275–1284.  https://doi.org/10.1111/j.1471-4159.2010.06706.x PubMedPubMedCentralGoogle Scholar
  202. 202.
    Wardman JH, Berezniuk I, Di S et al (2011) ProSAAS-derived peptides are colocalized with neuropeptide Y and function as neuropeptides in the regulation of food intake. PLoS One 6(12):e28152.  https://doi.org/10.1371/journal.pone.0028152 PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Sasaki K, Satomi Y, Takao T et al (2009) Snapshot peptidomics of the regulated secretory pathway. Mol Cell Proteomics 8(7):1638–1647.  https://doi.org/10.1074/mcp.M900044-MCP200 PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Sasaki K, Takahashi N, Satoh M et al (2010) A peptidomics strategy for discovering endogenous bioactive peptides. J Proteome Res 9(10):5047–5052.  https://doi.org/10.1021/pr1003455 PubMedCrossRefGoogle Scholar
  205. 205.
    Ferro ES, Rioli V, Castro LM et al (2014) Intracellular peptides: from discovery to function. EuPA Open Proteom 3:143–151.  https://doi.org/10.1016/j.euprot.2014.02.009 CrossRefGoogle Scholar
  206. 206.
    Lyons PJ, Fricker LD (2010) Substrate specificity of human carboxypeptidase A6. J Biol Chem 285(49):38234–38242.  https://doi.org/10.1074/jbc.M110.158626 PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Jost MM, Lamerz J, Tammen H et al (2009) In vivo profiling of DPP4 inhibitors reveals alterations in collagen metabolism and accumulation of an amyloid peptide in rat plasma. Biochem Pharmacol 77(2):228–237.  https://doi.org/10.1016/j.bcp.2008.09.032 PubMedCrossRefGoogle Scholar
  208. 208.
    Tinoco AD, Tagore DM, Saghatelian A (2010) Expanding the dipeptidyl peptidase 4-regulated peptidome via an optimized peptidomics platform. J Am Chem Soc 132(11):3819–3830.  https://doi.org/10.1021/ja909524e PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    FDA-NIH Biomarker Working Group (2016) BEST (Biomarkers, EndpointS, and other Tools) Resource. https://www.ncbi.nlm.nih.gov/books/NBK338449/
  210. 210.
    Sato K, Sasaki K, Akiyama Y et al (2001) Mass spectrometric high-throughput analysis of serum-free conditioned medium from cancer cell lines. Cancer Lett 170(2):153–159PubMedCrossRefGoogle Scholar
  211. 211.
    Sato K, Sasaki K, Tsao M-S et al (2002) Peptide differential display of serum-free conditioned medium from cancer cell lines. Cancer Lett 176(2):199–203PubMedCrossRefGoogle Scholar
  212. 212.
    Petricoin EF, Ardekani AM, Hitt BA et al (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306):572–577.  https://doi.org/10.1016/S0140-6736(02)07746-2 PubMedCrossRefGoogle Scholar
  213. 213.
    Petricoin EF, Liotta LA (2004) SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr Opin Biotechnol 15(1):24–30.  https://doi.org/10.1016/j.copbio.2004.01.005 PubMedCrossRefGoogle Scholar
  214. 214.
    Villanueva J, Philip J, Entenberg D et al (2004) Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal Chem 76(6):1560–1570.  https://doi.org/10.1021/ac0352171 PubMedCrossRefGoogle Scholar
  215. 215.
    Ornstein DK, Rayford W, Fusaro VA et al (2004) Serum proteomic profiling can discriminate prostate cancer from benign prostates in men with total prostate specific antigen levels between 2.5 and 15.0 ng/ml. J Urol 172(4 Pt 1):1302–1305PubMedCrossRefGoogle Scholar
  216. 216.
    Diamandis EP (2003) Point: Proteomic patterns in biological fluids: do they represent the future of cancer diagnostics? Clin Chem 49(8):1272–1275PubMedCrossRefGoogle Scholar
  217. 217.
    Albrethsen J (2007) Reproducibility in protein profiling by MALDI-TOF mass spectrometry. Clin Chem 53(5):852–858.  https://doi.org/10.1373/clinchem.2006.082644 PubMedCrossRefGoogle Scholar
  218. 218.
    Carrette O, Demalte I, Scherl A et al (2003) A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer’s disease. Proteomics 3(8):1486–1494.  https://doi.org/10.1002/pmic.200300470 PubMedCrossRefGoogle Scholar
  219. 219.
    Duncan MW, Roder H, Hunsucker SW (2008) Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief Funct Genomic Proteomic 7(5):355–370.  https://doi.org/10.1093/bfgp/eln041 PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Hashiguchi T, Tanaka K, Lee L-J et al (2009) Diagnostic value of serum peptidome analyses for protease activated pathological conditions beyond cancer diagnosis. Med Hypotheses 73(5):760–763.  https://doi.org/10.1016/j.mehy.2009.04.026 PubMedCrossRefGoogle Scholar
  221. 221.
    Zhu P, Bowden P, Zhang D et al (2011) Mass spectrometry of peptides and proteins from human blood. Mass Spectrom Rev 30(5):685–732.  https://doi.org/10.1002/mas.20291 PubMedGoogle Scholar
  222. 222.
    Labots M, Schutte LM, van der Mijn JC et al (2014) Mass spectrometry-based serum and plasma peptidome profiling for prediction of treatment outcome in patients with solid malignancies. Oncologist 19(10):1028–1039.  https://doi.org/10.1634/theoncologist.2014-0101 PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Mahboob S, Mohamedali A, Ahn SB et al (2015) Is isolation of comprehensive human plasma peptidomes an achievable quest? J Proteomics 127(Pt B):300–309.  https://doi.org/10.1016/j.jprot.2015.05.010 PubMedCrossRefGoogle Scholar
  224. 224.
    Jurgens M, Appel A, Heine G et al (2005) Towards characterization of the human urinary peptidome. Comb Chem High Throughput Screen 8(8):757–765PubMedCrossRefGoogle Scholar
  225. 225.
    Good DM, Zurbig P, Argiles A et al (2010) Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics 9(11):2424–2437.  https://doi.org/10.1074/mcp.M110.001917 PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Smith CR, Batruch I, Bauca JM et al (2014) Deciphering the peptidome of urine from ovarian cancer patients and healthy controls. Clin Proteomics 11(1):23.  https://doi.org/10.1186/1559-0275-11-23 PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Kononikhin AS, Starodubtseva NL, Bugrova AE et al (2016) An untargeted approach for the analysis of the urine peptidome of women with preeclampsia. J Proteomics 149:38–43.  https://doi.org/10.1016/j.jprot.2016.04.024 PubMedCrossRefGoogle Scholar
  228. 228.
    Selle H, Lamerz J, Buerger K et al (2005) Identification of novel biomarker candidates by differential peptidomics analysis of cerebrospinal fluid in Alzheimer’s disease. Comb Chem High Throughput Screen 8(8):801–806PubMedCrossRefGoogle Scholar
  229. 229.
    Yuan X, Desiderio DM (2005) Human cerebrospinal fluid peptidomics. J Mass Spectrom 40(2):176–181.  https://doi.org/10.1002/jms.737 PubMedCrossRefGoogle Scholar
  230. 230.
    Holtta M, Zetterberg H, Mirgorodskaya E et al (2012) Peptidome analysis of cerebrospinal fluid by LC-MALDI MS. PLoS One 7(8):e42555.  https://doi.org/10.1371/journal.pone.0042555 PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Hansson KT, Skillback T, Pernevik E et al (2017) Expanding the cerebrospinal fluid endopeptidome. Proteomics.  https://doi.org/10.1002/pmic.201600384
  232. 232.
    Azkargorta M, Soria J, Acera A et al (2016) Human tear proteomics and peptidomics in ophthalmology: toward the translation of proteomic biomarkers into clinical practice. J Proteomics.  https://doi.org/10.1016/j.jprot.2016.05.006
  233. 233.
    Wilkins MR, Appel RD, van Eyk JE et al (2006) Guidelines for the next 10 years of proteomics. Proteomics 6(1):4–8.  https://doi.org/10.1002/pmic.200500856 PubMedCrossRefGoogle Scholar
  234. 234.
    Issaq HJ, Waybright TJ, Veenstra TD (2011) Cancer biomarker discovery: opportunities and pitfalls in analytical methods. Electrophoresis 32(9):967–975.  https://doi.org/10.1002/elps.201000588 PubMedCrossRefGoogle Scholar
  235. 235.
    Jahn H, Wittke S, Zurbig P et al (2011) Peptide fingerprinting of Alzheimer’s disease in cerebrospinal fluid: identification and prospective evaluation of new synaptic biomarkers. PLoS One 6(10):e26540.  https://doi.org/10.1371/journal.pone.0026540 PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Wijte D, McDonnell L, Balog CI et al (2012) A novel peptidomics approach to detect markers of Alzheimer’s disease in cerebrospinal fluid. Methods 56(4):500–507.  https://doi.org/10.1016/j.ymeth.2012.03.018 PubMedCrossRefGoogle Scholar
  237. 237.
    Holtta M, Minthon L, Hansson O et al (2015) An integrated workflow for multiplex CSF proteomics and peptidomics-identification of candidate cerebrospinal fluid biomarkers of Alzheimer’s disease. J Proteome Res 14(2):654–663.  https://doi.org/10.1021/pr501076j PubMedCrossRefGoogle Scholar
  238. 238.
    Hendrickson RC, Lee AY, Song Q et al (2015) High resolution discovery proteomics reveals candidate disease progression markers of Alzheimer’s disease in human cerebrospinal fluid. PLoS One 10(8):e0135365.  https://doi.org/10.1371/journal.pone.0135365 PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Schrader M, Selle H (2006) The process chain for peptidomic biomarker discovery. Dis Markers 22(1-2):27–37PubMedCrossRefGoogle Scholar
  240. 240.
    Bauca JM, Martinez-Morillo E, Diamandis EP (2014) Peptidomics of urine and other biofluids for cancer diagnostics. Clin Chem 60(8):1052–1061.  https://doi.org/10.1373/clinchem.2013.211714 PubMedCrossRefGoogle Scholar
  241. 241.
    Jorgenson JW (2010) Capillary liquid chromatography at ultrahigh pressures. Annu Rev Anal Chem (Palo Alto Calif) 3:129–150.  https://doi.org/10.1146/annurev.anchem.1.031207.113014 CrossRefGoogle Scholar
  242. 242.
    Figeys D, Aebersold R (1998) High sensitivity analysis of proteins and peptides by capillary electrophoresis-tandem mass spectrometry: recent developments in technology and applications. Electrophoresis 19(6):885–892.  https://doi.org/10.1002/elps.1150190603 PubMedCrossRefGoogle Scholar
  243. 243.
    Hernandez-Borges J, Neususs C, Cifuentes A et al (2004) On-line capillary electrophoresis-mass spectrometry for the analysis of biomolecules. Electrophoresis 25(14):2257–2281.  https://doi.org/10.1002/elps.200405954 PubMedCrossRefGoogle Scholar
  244. 244.
    Schiffer E, Mischak H, Novak J (2006) High resolution proteome/peptidome analysis of body fluids by capillary electrophoresis coupled with MS. Proteomics 6(20):5615–5627.  https://doi.org/10.1002/pmic.200600230 PubMedCrossRefGoogle Scholar
  245. 245.
    Simo C, Cifuentes A, Kasicka V (2013) Capillary electrophoresis-mass spectrometry for Peptide analysis: target-based approaches and proteomics/peptidomics strategies. Methods Mol Biol 984:139–151.  https://doi.org/10.1007/978-1-62703-296-4_11 PubMedCrossRefGoogle Scholar
  246. 246.
    Scriba GK (2016) Separation of peptides by capillary electrophoresis. Methods Mol Biol 1483:365–391.  https://doi.org/10.1007/978-1-4939-6403-1_18 PubMedCrossRefGoogle Scholar
  247. 247.
    Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537(7620):347–355.  https://doi.org/10.1038/nature19949 PubMedCrossRefGoogle Scholar
  248. 248.
    Gygi SP, Rist B, Griffin TJ et al (2002) Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J Proteome Res 1(1):47–54PubMedCrossRefGoogle Scholar
  249. 249.
    Ewles M, Goodwin L (2011) Bioanalytical approaches to analyzing peptides and proteins by LC–MS/MS. Bioanalysis 3(12):1379–1397.  https://doi.org/10.4155/bio.11.112 PubMedCrossRefGoogle Scholar
  250. 250.
    Pailleux F, Beaudry F (2012) Internal standard strategies for relative and absolute quantitation of peptides in biological matrices by liquid chromatography tandem mass spectrometry. Biomed Chromatogr 26(8):881–891.  https://doi.org/10.1002/bmc.2757 PubMedGoogle Scholar
  251. 251.
    Romanova EV, Dowd SE, Sweedler JV (2013) Quantitation of endogenous peptides using mass spectrometry based methods. Curr Opin Chem Biol 17(5):801–808.  https://doi.org/10.1016/j.cbpa.2013.05.030 PubMedCrossRefGoogle Scholar
  252. 252.
    Syka JEP, Coon JJ, Schroeder MJ et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–9533.  https://doi.org/10.1073/pnas.0402700101 PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Olsen JV, Macek B, Lange O et al (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4(9):709–712.  https://doi.org/10.1038/nmeth1060 PubMedCrossRefGoogle Scholar
  254. 254.
    Seidler J, Zinn N, Boehm ME et al (2010) De novo sequencing of peptides by MS/MS. Proteomics 10(4):634–649.  https://doi.org/10.1002/pmic.200900459 PubMedCrossRefGoogle Scholar
  255. 255.
    Shen Y, Tolic N, Xie F et al (2011) Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods. J Proteome Res 10(9):3929–3943.  https://doi.org/10.1021/pr200052c PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Guthals A, Clauser KR, Frank A et al (2013) Sequencing-grade de novo analysis of MS/MS triplets (CID/HCD/ETD) from overlapping peptides. J Proteome Res 12(6):2846–2857.  https://doi.org/10.1021/pr400173d PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Shen Y, Tolic N, Purvine SO et al (2012) Improving collision induced dissociation (CID), high energy collision dissociation (HCD), and electron transfer dissociation (ETD) fourier transform MS/MS degradome-peptidome identifications using high accuracy mass information. J Proteome Res 11(2):668–677.  https://doi.org/10.1021/pr200597j PubMedCrossRefGoogle Scholar
  258. 258.
    Makarov A, Scigelova M (2010) Coupling liquid chromatography to Orbitrap mass spectrometry. J Chromatogr A 1217(25):3938–3945.  https://doi.org/10.1016/j.chroma.2010.02.022 PubMedCrossRefGoogle Scholar
  259. 259.
    Kaufmann R, Spengler B, Lutzenkirchen F (1993) Mass spectrometric sequencing of linear peptides by product-ion analysis in a reflectron time-of-flight mass spectrometer using matrix-assisted laser desorption ionization. Rapid Commun Mass Spectrom 7(10):902–910.  https://doi.org/10.1002/rcm.1290071010 PubMedCrossRefGoogle Scholar
  260. 260.
    Vestal ML, Campbell JM (2005) Tandem time-of-flight mass spectrometry. Methods Enzymol 402:79–108.  https://doi.org/10.1016/S0076-6879(05)02003-3 PubMedCrossRefGoogle Scholar
  261. 261.
    Samgina TY, Artemenko KA, Gorshkov VA et al (2008) Oxidation versus carboxamidomethylation of S-S bond in ranid frog peptides: pro and contra for de novo MALDI-MS sequencing. J Am Soc Mass Spectrom 19(4):479–487.  https://doi.org/10.1016/j.jasms.2007.12.010 PubMedCrossRefGoogle Scholar
  262. 262.
    Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69(23):4751–4760PubMedCrossRefGoogle Scholar
  263. 263.
    Chaurand P, Caprioli RM (2002) Direct profiling and imaging of peptides and proteins from mammalian cells and tissue sections by mass spectrometry. Electrophoresis 23(18):3125–3135.  https://doi.org/10.1002/1522-2683(200209)23:18<3125:AID-ELPS3125>3.0.CO;2-# PubMedCrossRefGoogle Scholar
  264. 264.
    Goodwin RJ, Nilsson A, Borg D et al (2012) Conductive carbon tape used for support and mounting of both whole animal and fragile heat-treated tissue sections for MALDI MS imaging and quantitation. J Proteomics 75(16):4912–4920.  https://doi.org/10.1016/j.jprot.2012.07.006 PubMedCrossRefGoogle Scholar
  265. 265.
    Beine B, Diehl HC, Meyer HE et al (2016) Tissue MALDI mass spectrometry imaging (MALDI MSI) of peptides. Methods Mol Biol 1394:129–150.  https://doi.org/10.1007/978-1-4939-3341-9_10 PubMedCrossRefGoogle Scholar
  266. 266.
    Spraggins JM, Caprioli RM (2011) High-speed MALDI-TOF imaging mass spectrometry: rapid ion image acquisition and considerations for next generation instrumentation. J Am Soc Mass Spectrom 22(6):1022–1031.  https://doi.org/10.1007/s13361-011-0121-0 PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Minerva L, Boonen K, Menschaert G et al (2011) Linking mass spectrometric imaging and traditional peptidomics: a validation in the obese mouse model. Anal Chem 83(20):7682–7691.  https://doi.org/10.1021/ac200888j PubMedCrossRefGoogle Scholar
  268. 268.
    Lanni EJ, Rubakhin SS, Sweedler JV (2012) Mass spectrometry imaging and profiling of single cells. J Proteomics 75(16):5036–5051.  https://doi.org/10.1016/j.jprot.2012.03.017 PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Ye H, Wang J, Zhang Z et al (2015) Defining the neuropeptidome of the spiny lobster panulirus interruptus brain using a multidimensional mass spectrometry-based platform. J Proteome Res 14(11):4776–4791.  https://doi.org/10.1021/acs.jproteome.5b00627 PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Hishimoto A, Nomaru H, Ye K et al (2016) Molecular histochemistry identifies peptidomic organization and reorganization along striatal projection units. Biol Psychiatry 79(5):415–420.  https://doi.org/10.1016/j.biopsych.2015.09.012 PubMedCrossRefGoogle Scholar
  271. 271.
    Prentice BM, Chumbley CW, Caprioli RM (2015) High-speed MALDI MS/MS imaging mass spectrometry using continuous raster sampling. J Mass Spectrom 50(4):703–710.  https://doi.org/10.1002/jms.3579 PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Gemperline E, Keller C, Jayaraman D et al (2016) Examination of endogenous peptides in medicago truncatula using mass spectrometry imaging. J Proteome Res.  https://doi.org/10.1021/acs.jproteome.6b00471
  273. 273.
    Bivehed E, Stromvall R, Bergquist J et al (2016) Region-specific bioconversion of dynorphin neuropeptide detected by in situ histochemistry and MALDI imaging mass spectrometry. Peptides.  https://doi.org/10.1016/j.peptides.2016.11.006
  274. 274.
    Lamerz J, Selle H, Scapozza L et al (2005) Correlation-associated peptide networks of human cerebrospinal fluid. Proteomics 5(11):2789–2798.  https://doi.org/10.1002/pmic.200401192 PubMedCrossRefGoogle Scholar
  275. 275.
    Ma B, Zhang K, Hendrie C et al (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17(20):2337–2342.  https://doi.org/10.1002/rcm.1196 PubMedCrossRefGoogle Scholar
  276. 276.
    Clynen E, Baggerman G, Huybrechts J et al (2003) Peptidomics of the locust corpora allata: identification of novel pyrokinins (-FXPRLamides). Peptides 24(10):1493–1500PubMedCrossRefGoogle Scholar
  277. 277.
    Menschaert G, Vandekerckhove TT, Baggerman G et al (2010) A hybrid, de novo based, genome-wide database search approach applied to the sea urchin neuropeptidome. J Proteome Res 9(2):990–996.  https://doi.org/10.1021/pr900885k PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Petruzziello F, Fouillen L, Wadensten H et al (2012) Extensive characterization of Tupaia belangeri neuropeptidome using an integrated mass spectrometric approach. J Proteome Res 11(2):886–896.  https://doi.org/10.1021/pr200709j PubMedCrossRefGoogle Scholar
  279. 279.
    Medzihradszky KF, Chalkley RJ (2015) Lessons in de novo peptide sequencing by tandem mass spectrometry. Mass Spectrom Rev 34(1):43–63PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Caers J, Boonen K, van den Abbeele J et al (2015) Peptidomics of Neuropeptidergic Tissues of the Tsetse Fly Glossina morsitans morsitans. J Am Soc Mass Spectrom 26(12):2024–2038.  https://doi.org/10.1007/s13361-015-1248-1 PubMedCrossRefGoogle Scholar
  281. 281.
    Toullec J-Y, Corre E, Bernay B et al (2013) Transcriptome and peptidome characterisation of the main neuropeptides and peptidic hormones of a euphausiid. The Ice Krill, Euphausia crystallorophias. PLoS One 8(8):e71609.  https://doi.org/10.1371/journal.pone.0071609 PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Zhang S, Cao X, He Y et al (2014) Semi-quantitative analysis of changes in the plasma peptidome of Manduca sexta larvae and their correlation with the transcriptome variations upon immune challenge. Insect Biochem Mol Biol 47:46–54.  https://doi.org/10.1016/j.ibmb.2014.02.002 PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Seligmann H (2015) Codon expansion and systematic transcriptional deletions produce tetra-, pentacoded mitochondrial peptides. J Theor Biol 387:154–165.  https://doi.org/10.1016/j.jtbi.2015.09.030 PubMedCrossRefGoogle Scholar
  284. 284.
    Koehbach J, Clark RJ (2016) Unveiling the diversity of cyclotides by combining peptidome and transcriptome analysis. Biopolymers.  https://doi.org/10.1002/bip.22858
  285. 285.
    Mamone G, Picariello G, Caira S et al (2009) Analysis of food proteins and peptides by mass spectrometry-based techniques. J Chromatogr A 1216(43):7130–7142.  https://doi.org/10.1016/j.chroma.2009.07.052 PubMedCrossRefGoogle Scholar
  286. 286.
    Panchaud A, Affolter M, Kussmann M (2012) Mass spectrometry for nutritional peptidomics: how to analyze food bioactives and their health effects. J Proteomics 75(12):3546–3559.  https://doi.org/10.1016/j.jprot.2011.12.022 PubMedCrossRefGoogle Scholar
  287. 287.
    Dallas DC, Guerrero A, Khaldi N et al (2013) Extensive in vivo human milk peptidomics reveals specific proteolysis yielding protective antimicrobial peptides. J Proteome Res 12(5):2295–2304.  https://doi.org/10.1021/pr400212z PubMedPubMedCentralCrossRefGoogle Scholar
  288. 288.
    Baum F, Fedorova M, Ebner J et al (2013) Analysis of the endogenous peptide profile of milk: identification of 248 mainly casein-derived peptides. J Proteome Res 12(12):5447–5462.  https://doi.org/10.1021/pr4003273 PubMedCrossRefGoogle Scholar
  289. 289.
    Sassi M, Arena S, Scaloni A (2015) MALDI-TOF-MS platform for integrated proteomic and peptidomic profiling of milk samples allows rapid detection of food adulterations. J Agric Food Chem 63(27):6157–6171.  https://doi.org/10.1021/acs.jafc.5b02384 PubMedCrossRefGoogle Scholar
  290. 290.
    Dallas DC, Citerne F, Tian T et al (2016) Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins. Food Chem 197(Pt A):273–284.  https://doi.org/10.1016/j.foodchem.2015.10.116 PubMedCrossRefGoogle Scholar
  291. 291.
    Guarino C, Fuselli F, La Mantia A et al (2010) Peptidomic approach, based on liquid chromatography/electrospray ionization tandem mass spectrometry, for detecting sheep’s milk in goat’s and cow’s cheeses. Rapid Commun Mass Spectrom 24(6):705–713.  https://doi.org/10.1002/rcm.4426 PubMedCrossRefGoogle Scholar
  292. 292.
    Sforza S, Cavatorta V, Lambertini F et al (2012) Cheese peptidomics: a detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging. J Dairy Sci 95(7):3514–3526.  https://doi.org/10.3168/jds.2011-5046 PubMedCrossRefGoogle Scholar
  293. 293.
    Gallego M, Mora L, Aristoy MC et al (2015) Titin-derived peptides as processing time markers in dry-cured ham. Food Chem 167:326–339.  https://doi.org/10.1016/j.foodchem.2014.06.088 PubMedCrossRefGoogle Scholar
  294. 294.
    Castellano P, Mora L, Escudero E et al (2016) Antilisterial peptides from Spanish dry-cured hams: purification and identification. Food Microbiol 59:133–141.  https://doi.org/10.1016/j.fm.2016.05.018 PubMedCrossRefGoogle Scholar
  295. 295.
    Lahrichi SL, Affolter M, Zolezzi IS et al (2013) Food peptidomics: large scale analysis of small bioactive peptides—a pilot study. J Proteomics 88:83–91.  https://doi.org/10.1016/j.jprot.2013.02.018 PubMedCrossRefGoogle Scholar
  296. 296.
    Habibi-Najafi MB, Lee BH (1996) Bitterness in cheese: a review. Crit Rev Food Sci Nutr 36(5):397–411.  https://doi.org/10.1080/10408399609527733 PubMedCrossRefGoogle Scholar
  297. 297.
    Liepke C, Zucht HD, Forssmann WG et al (2001) Purification of novel peptide antibiotics from human milk. J Chromatogr B Biomed Sci Appl 752(2):369–377PubMedCrossRefGoogle Scholar
  298. 298.
    Liepke C, Adermann K, Raida M et al (2002) Human milk provides peptides highly stimulating the growth of bifidobacteria. Eur J Biochem 269(2):712–718PubMedCrossRefGoogle Scholar
  299. 299.
    Ferreira IM, Jorge K, Nogueira LC et al (2005) Effects of the combination of hydrophobic polypeptides, iso-alpha acids, and malto-oligosaccharides on beer foam stability. J Agric Food Chem 53(12):4976–4981.  https://doi.org/10.1021/jf047796w PubMedCrossRefGoogle Scholar
  300. 300.
    Picariello G, Mamone G, Cutignano A et al (2015) Proteomics, peptidomics, and immunogenic potential of wheat beer (Weissbier). J Agric Food Chem 63(13):3579–3586.  https://doi.org/10.1021/acs.jafc.5b00631 PubMedCrossRefGoogle Scholar
  301. 301.
    Ibanez C, Simo C, Garcia-Canas V et al (2013) Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in Foodomics: a review. Anal Chim Acta 802:1–13.  https://doi.org/10.1016/j.aca.2013.07.042 PubMedCrossRefGoogle Scholar
  302. 302.
    Ortea I, Pascoal A, Canas B et al (2012) Food authentication of commercially-relevant shrimp and prawn species: from classical methods to Foodomics. Electrophoresis 33(15):2201–2211.  https://doi.org/10.1002/elps.201100576 PubMedCrossRefGoogle Scholar
  303. 303.
    Montowska M, Alexander MR, Tucker GA et al (2015) Authentication of processed meat products by peptidomic analysis using rapid ambient mass spectrometry. Food Chem 187:297–304.  https://doi.org/10.1016/j.foodchem.2015.04.078 PubMedCrossRefGoogle Scholar
  304. 304.
    Silva FA, de Sousa OM, de Souza JM et al (2017) Plant proteomics and peptidomics in host-pathogen interactions: the weapons used by each side. Curr Protein Pept Sci 18(4):400–410PubMedCrossRefGoogle Scholar
  305. 305.
    Ohyama K, Ogawa M, Matsubayashi Y (2008) Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. Plant J 55(1):152–160.  https://doi.org/10.1111/j.1365-313X.2008.03464.x PubMedCrossRefGoogle Scholar
  306. 306.
    Farrokhi N, Whitelegge JP, Brusslan JA (2008) Plant peptides and peptidomics. Plant Biotechnol J 6(2):105–134.  https://doi.org/10.1111/j.1467-7652.2007.00315.x PubMedCrossRefGoogle Scholar
  307. 307.
    Sarethy IP (2016) Plant peptides: bioactivity, opportunities and challenges. Protein Pept Lett 24(2):102–108CrossRefGoogle Scholar
  308. 308.
    Hellinger R, Koehbach J, Soltis DE et al (2015) Peptidomics of circular cysteine-rich plant peptides: analysis of the diversity of cyclotides from viola tricolor by transcriptome and proteome mining. J Proteome Res 14(11):4851–4862.  https://doi.org/10.1021/acs.jproteome.5b00681 PubMedPubMedCentralCrossRefGoogle Scholar
  309. 309.
    Serra A, Hemu X, Nguyen GKT et al (2016) A high-throughput peptidomic strategy to decipher the molecular diversity of cyclic cysteine-rich peptides. Sci Rep 6:23005.  https://doi.org/10.1038/srep23005 PubMedPubMedCentralCrossRefGoogle Scholar
  310. 310.
    Fesenko IA, Arapidi GP, Skripnikov AY et al (2015) Specific pools of endogenous peptides are present in gametophore, protonema, and protoplast cells of the moss Physcomitrella patens. BMC Plant Biol 15:87.  https://doi.org/10.1186/s12870-015-0468-7 PubMedPubMedCentralCrossRefGoogle Scholar
  311. 311.
    Engelhard VH, Appella E, Benjamin DC et al (1993) Mass spectrometric analysis of peptides associated with the human class I MHC molecules HLA-A2.1 and HLA-B7 and identification of structural features that determine binding. Chem Immunol 57:39–62PubMedCrossRefGoogle Scholar
  312. 312.
    Istrail S, Florea L, Halldorsson BV et al (2004) Comparative immunopeptidomics of humans and their pathogens. Proc Natl Acad Sci U S A 101(36):13268–13272.  https://doi.org/10.1073/pnas.0404740101 PubMedPubMedCentralCrossRefGoogle Scholar
  313. 313.
    Bassani-Sternberg M, Barnea E, Beer I et al (2010) Soluble plasma HLA peptidome as a potential source for cancer biomarkers. Proc Natl Acad Sci U S A 107(44):18769–18776.  https://doi.org/10.1073/pnas.1008501107 PubMedPubMedCentralCrossRefGoogle Scholar
  314. 314.
    Caron E, Kowalewski DJ, Chiek Koh C et al (2015) Analysis of major histocompatibility complex (MHC) immunopeptidomes using mass spectrometry. Mol Cell Proteomics 14(12):3105–3117.  https://doi.org/10.1074/mcp.O115.052431 PubMedPubMedCentralCrossRefGoogle Scholar
  315. 315.
    Bassani-Sternberg M, Coukos G (2016) Mass spectrometry-based antigen discovery for cancer immunotherapy. Curr Opin Immunol 41:9–17.  https://doi.org/10.1016/j.coi.2016.04.005 PubMedCrossRefGoogle Scholar
  316. 316.
    Bassani-Sternberg M, Braunlein E, Klar R et al (2016) Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun 7:13404.  https://doi.org/10.1038/ncomms13404 PubMedPubMedCentralCrossRefGoogle Scholar
  317. 317.
    Backert L, Kowalewski DJ, Walz S et al (2017) A meta-analysis of HLA peptidome composition in different hematological entities: entity-specific dividing lines and “pan-leukemia” antigens. Oncotarget 8(27):43915–43924.  https://doi.org/10.18632/oncotarget.14918 PubMedPubMedCentralCrossRefGoogle Scholar
  318. 318.
    Abelin JG, Keskin DB, Sarkizova S et al (2017) Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46(2):315–326.  https://doi.org/10.1016/j.immuni.2017.02.007 PubMedPubMedCentralCrossRefGoogle Scholar
  319. 319.
    Uhlen M, Hallstrom BM, Lindskog C et al (2016) Transcriptomics resources of human tissues and organs. Mol Syst Biol 12(4):862.  https://doi.org/10.15252/msb.20155865 PubMedPubMedCentralCrossRefGoogle Scholar
  320. 320.
    Kim M-S, Pinto SM, Getnet D et al (2014) A draft map of the human proteome. Nature 509(7502):575–581.  https://doi.org/10.1038/nature13302 PubMedPubMedCentralCrossRefGoogle Scholar
  321. 321.
    Wilhelm M, Schlegl J, Hahne H et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509(7502):582–587.  https://doi.org/10.1038/nature13319 PubMedCrossRefGoogle Scholar
  322. 322.
    Wishart DS, Jewison T, Guo AC et al (2013) HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res 41(Database issue):D801–D807.  https://doi.org/10.1093/nar/gks1065 PubMedGoogle Scholar
  323. 323.
    Sud M, Fahy E, Cotter D et al (2016) Metabolomics workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res 44(D1):D463–D470.  https://doi.org/10.1093/nar/gkv1042 PubMedCrossRefGoogle Scholar
  324. 324.
    Fahy E, Cotter D, Sud M et al (2011) Lipid classification, structures and tools. Biochim Biophys Acta 1811(11):637–647.  https://doi.org/10.1016/j.bbalip.2011.06.009 PubMedPubMedCentralCrossRefGoogle Scholar
  325. 325.
    Cummings RD, Pierce JM (2014) The challenge and promise of glycomics. Chem Biol 21(1):1–15.  https://doi.org/10.1016/j.chembiol.2013.12.010 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of Biotechnology and BioinformaticsWeihenstephan-Tr. University of Applied SciencesFreisingGermany

Personalised recommendations