Skip to main content

Template-Assisted Metabolic Reconstruction and Assembly of Hybrid Bacterial Models

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1716))

Abstract

Intraspecific genomic exchanges happen frequently between bacteria living in the same natural environment and can also be performed artificially in the laboratory for basic research or genetic/metabolic engineering purposes. In silico metabolic reconstruction and simulation of the metabolism of the hybrid strains that result from these processes can be used to predict the phenotypic outcome of such genomic rearrangements; this can be especially helpful as a designing tool in the purview of synthetic biology. However, reconstructing the metabolism of a bacterium with a hybrid genome through in silico approaches is not a trivial task, as it requires taking into account the complex relationships existing between metabolic genes and how they change (or remain unchanged) when new genes are placed in a different genomic context. Furthermore, in order to “mix” the metabolic models of different bacterial strains one needs at least two different metabolic models to begin with, and reconstructing a genome-scale model from the ground up is a challenging task itself, requiring an intensive manual effort and a great deal of information. In this chapter, we propose two general protocols to address the aforementioned issues of: (1) quickly generating strain-specific metabolic models, given the relevant genomic sequence and an already existing, high-quality metabolic model of a different strain belonging to the same species, and (2) reconstructing the metabolic model of a hybrid strain containing genomic elements from two different parental strains.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tang N, Ma S, Tian J (2013) New tools for cost-effective DNA synthesis. In: Synthetic biology. Academic Press, New York, NY, pp 3–21

    Chapter  Google Scholar 

  2. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594. https://doi.org/10.1016/j.gde.2005.09.006

    Article  CAS  PubMed  Google Scholar 

  3. Wiedenbeck J, Cohan FM (2011) Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957–976. https://doi.org/10.1111/j.1574-6976.2011.00292.x

    Article  CAS  PubMed  Google Scholar 

  4. Galardini M, Brilli M, Spini G, Rossi M, Roncaglia B, Bani A, Chiancianesi M, Moretto M, Engelen K, Bacci G, Pini F, Biondi EG, Bazzicalupo M, Mengoni A (2015) Evolution of intra-specific regulatory networks in a multipartite bacterial genome. PLoS Comput Biol 11:e1004478. https://doi.org/10.1371/journal.pcbi.1004478

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wiechert W (2002) Modeling and simulation: tools for metabolic engineering. J Biotechnol 94:37–63. https://doi.org/10.1016/S0168-1656(01)00418-7

    Article  CAS  PubMed  Google Scholar 

  6. Zhang C, Hua Q (2016) Applications of genome-scale metabolic models in biotechnology and systems medicine. Front Physiol 6:1–8. https://doi.org/10.3389/fphys.2015.00413

    Article  Google Scholar 

  7. Zou W, Liu L, Zhang J, Yang H, Zhou M, Hua Q, Chen J (2012) Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. J Biotechnol 161:42–48. https://doi.org/10.1016/j.jbiotec.2012.05.015

    Article  CAS  PubMed  Google Scholar 

  8. Biggs MB, Medlock GL, Kolling GL, Papin JA (2015) Metabolic network modeling of microbial communities. Wiley Interdiscip Rev Syst Biol Med 7:317–334. https://doi.org/10.1002/wsbm.1308

    Article  PubMed  PubMed Central  Google Scholar 

  9. Henry CS, Bernstein HC, Weisenhorn P, Taylor RC, Lee JY, Zucker J, Song HS (2016) Microbial community metabolic modeling: a community data-driven network reconstruction. J Cell Physiol 231:2339–2345. https://doi.org/10.1002/jcp.25428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sung J, Hale V, Merkel AC, Kim PJ, Chia N (2016) Metabolic modeling with Big Data and the gut microbiome. Appl Transl Genomics 10:10. https://doi.org/10.1016/j.atg.2016.02.001

    Article  Google Scholar 

  11. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121. https://doi.org/10.1038/nprot.2009.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, Mckenney K, Sutton G, Fitzhugh W, Fields C, Gocayne JD, Scott J, Shirley R, Liu LI, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL, Fuhrmann JL, Geoghagen NSM, Gnehm CL, Mcdonald LA, Small KV, Fraser CM, Smith HO, Venter JC (1995) Whole-genome random sequencing and assembly of haemophilus-influenzae Rd. Science 269:496–512. https://doi.org/10.1126/science.7542800

    Article  CAS  PubMed  Google Scholar 

  13. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018. https://doi.org/10.1126/science.282.5396.2012

    Article  Google Scholar 

  14. Edwards JS, Palsson BØ (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 97:5528–5533. https://doi.org/10.1073/pnas.97.10.5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Förster J, Famili I, Fu P, Palsson B, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253. https://doi.org/10.1101/gr.234503

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jamshidi N, Palsson BØ (2007) Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol 1:26. https://doi.org/10.1186/1752-0509-1-26

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rentzsch R, C a O (2009) Protein function prediction--the power of multiplicity. Trends Biotechnol 27:210–219. https://doi.org/10.1016/j.tibtech.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  18. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Stevens RL, Vonstein V, Xia F (2012) SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 7:e48053. https://doi.org/10.1371/journal.pone.0048053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982. https://doi.org/10.1038/nbt.1672

    Article  CAS  PubMed  Google Scholar 

  21. Sonnhammer ELL, Östlund G (2015) InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res 43:D234–D239. https://doi.org/10.1093/nar/gku1203

    Article  CAS  PubMed  Google Scholar 

  22. Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst Zool 19:99–113. https://doi.org/10.2307/2412448

    Article  CAS  PubMed  Google Scholar 

  23. Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39:309–338. https://doi.org/10.1146/annurev.genet.39.073003.114725

    Article  CAS  PubMed  Google Scholar 

  24. Madden T (2013) The BLAST sequence analysis tool. BLAST Seq Anal Tool 1–17.

    Google Scholar 

  25. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BØ (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6:1290–1307. https://doi.org/10.1038/nprot.2011.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR (2013) COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst Biol 7:74. https://doi.org/10.1186/1752-0509-7-74

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bornstein BJ, Keating SM, Jouraku A, Hucka M (2008) LibSBML: an API library for SBML. Bioinformatics 24:880–881. https://doi.org/10.1093/bioinformatics/btn051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Fondi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vignolini, T., Mengoni, A., Fondi, M. (2018). Template-Assisted Metabolic Reconstruction and Assembly of Hybrid Bacterial Models. In: Fondi, M. (eds) Metabolic Network Reconstruction and Modeling. Methods in Molecular Biology, vol 1716. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7528-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7528-0_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7527-3

  • Online ISBN: 978-1-4939-7528-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics