Coupling Fluxes, Enzymes, and Regulation in Genome-Scale Metabolic Models

Part of the Methods in Molecular Biology book series (MIMB, volume 1716)


Genome-scale models have expanded beyond their metabolic origins. Multiple modeling frameworks are required to combine metabolism with enzymatic networks, transcription, translation, and regulation. Mathematical programming offers a powerful set of tools for tackling these “multi-modality” models, although special attention must be paid to the connections between modeling types. This chapter reviews common methods for combining metabolic and discrete logical models into a single mathematical programming framework. Best practices, caveats, and recommendations are presented for the most commonly used software packages. Methods for troubleshooting large sets of logical rules are also discussed.

Key words

Metabolic modeling Flux balance analysis Mixed-integer programming MILP Transcriptional regulation Boolean networks Constraint-based modeling 



The author thanks Caroline Blassick for her assistance with Fig. 1.


  1. 1.
    Fell DA, Small JR (1986) Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem J 238:781–786CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Edwards JS, Palsson BO (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1:1. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kim J, Reed JL (2010) OptORF: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst Biol 4:53. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Suthers PF, Zomorrodi A, Maranas CD (2009) Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol 5:301. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Shlomi T, Eisenberg Y, Sharan R, Ruppin E (2007) A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol 3:101CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Maranas CD, Zomorrodi AR (2016) Optimization methods in metabolic networks. Wiley, Hoboken, NJ. CrossRefGoogle Scholar
  7. 7.
    Becker SA, Feist AM, Mo ML et al (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738. CrossRefPubMedGoogle Scholar
  8. 8.
    Ebrahim A, Lerman JA, Palsson BØ, Hyduke DR (2013) COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst Biol 7:74. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bartell JA, Yen P, Varga JJ et al (2014) Comparative metabolic systems analysis of pathogenic Burkholderia. J Bacteriol 196:210–226. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jensen PA, Lutz KA, Papin JA (2011) TIGER: toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks. BMC Syst Biol 5:147. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Covert MW, Palsson BØ (2003) Constraints-based models: regulation of gene expression reduces the steady-state solution space. J Theor Biol 221:309–325CrossRefPubMedGoogle Scholar
  12. 12.
    Covert MW, Knight EM, Reed JL et al (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature 429:92–96. CrossRefPubMedGoogle Scholar
  13. 13.
    Herrgård MJ, Lee B-S, Portnoy V, Palsson BØ (2006) Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res 16:627–635. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Oki E (2012) GLPK (GNU linear programming kit). In: Linear programming and algorithms for communication networks. CRC Press, Boca Raton, FL, pp 25–29CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Gurobi Optimization, Inc. (2016) Gurobi Optimizer Reference ManualGoogle Scholar
  17. 17.
    Duarte NC, Herrgård MJ, Palsson BØ (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Burgard AP, Vaidyaraman S, Maranas CD (2001) Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments. Biotechnol Prog 17:791–797. CrossRefPubMedGoogle Scholar
  19. 19.
    Zeng L, Das S, Burne RA (2010) Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression. J Bacteriol 192:2434–2444. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Abranches J, Chen Y-YM, Burne RA (2004) Galactose metabolism by Streptococcus mutans. Appl Environ Microbiol 70:6047–6052. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Becker SA, Palsson BØ (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4:e1000082. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jensen PA, Papin JA (2011) Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics 27:541–547. CrossRefPubMedGoogle Scholar
  23. 23.
    Sun Y, Fleming RMT, Thiele I, Saunders MA (2013) Robust flux balance analysis of multiscale biochemical reaction networks. BMC Bioinformatics 14:240. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of Bioengineering and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations