Advertisement

In Vivo Electroporation of Developing Mouse Retina

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1715)

Abstract

In vivo electroporation enables the transformation of retinal tissue with engineered DNA plasmids, facilitating the selective expression of desired gene products. This method achieves plasmid transfer via the application of an external electrical field, which both generates a transient increase in the permeability of cell plasma membranes, and promotes the incorporation of DNA plasmids by electrophoretic transfer through the permeabilized membranes. Here we describe a method for the preparation, injection, and electroporation of DNA plasmids into neonatal mouse retinal tissue. This method can be utilized to perform gain of function or loss of function studies in the mouse. Experimental design is limited only by construct availability.

Key words

Electroporation Gain of function Gene expression In vivo Loss of function Plasmid Subretinal injection Retina 

References

  1. 1.
    Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci U S A 101:16–22. https://doi.org/10.1073/pnas.2235688100 CrossRefPubMedGoogle Scholar
  2. 2.
    Matsuda T, Cepko CL (2007) Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A 104:1027–1032. 0610155104 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Onishi A, Peng GH, Hsu C et al (2009) Pias3-dependent SUMOylation directs rod photoreceptor development. Neuron 61:234–246. https://doi.org/10.1016/j.neuron.2008.12.006 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Onishi A, Peng GH, Poth EM et al (2010) The orphan nuclear hormone receptor ERRbeta controls rod photoreceptor survival. Proc Natl Acad Sci U S A 107:11579–11584. https://doi.org/10.1073/pnas.1000102107 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Onishi A, Peng GH, Chen S et al (2010) Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation. Nat Neurosci 13:1059–1065. https://doi.org/10.1038/nn.2618
  6. 6.
    de Melo J, Peng GH, Chen S et al (2011) The Spalt family transcription factor Sall3 regulates the development of cone photoreceptors and retinal horizontal interneurons. Development 138:2325–2336. https://doi.org/10.1242/dev.061846 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    de Melo J, Blackshaw S (2011) In vivo electroporation of developing mouse retina. J Vis Exp (52):pii: 2847. https://doi.org/10.3791/2847
  8. 8.
    de Melo J, Zibetti C, Clark BS et al (2016) Lhx2 is an essential factor for retinal gliogenesis and notch signaling. J Neurosci 36:2391–2405. https://doi.org/10.1523/JNEUROSCI.3145-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    de Melo J, Clark BS, Blackshaw S (2016) Multiple intrinsic factors act in concert with Lhx2 to direct retinal gliogenesis. Sci Rep 6:32757. https://doi.org/10.1038/srep32757 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290CrossRefPubMedGoogle Scholar
  11. 11.
    Turnbull RJ (1973) Letter: an alternate explanation for the permeability changes induced by electrical impulses in vesicular membranes. J Membr Biol 14:193–196CrossRefPubMedGoogle Scholar
  12. 12.
    Zimmermann U, Schulz J, Pilwat G (1973) Transcellular ion flow in Escherichia coli B and electrical sizing of bacterias. Biophys J 13:1005–1013. S0006-3495(73)86041-2 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kinosita K, Tsong TY (1977) Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim Biophys Acta 471:227–242. 0005-2736(77)90252-8 [pii]CrossRefPubMedGoogle Scholar
  14. 14.
    Neumann E, Schaefer-Ridder M, Wang Y et al (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845PubMedPubMedCentralGoogle Scholar
  15. 15.
    Swartz M, Eberhart J, Mastick GS et al (2001) Sparking new frontiers: using in vivo electroporation for genetic manipulations. Dev Biol 233:13–21. https://doi.org/10.1006/dbio.2001.0181 CrossRefPubMedGoogle Scholar
  16. 16.
    MacLaren RE, Bennett J, Schwartz SD (2016) Gene therapy and stem cell transplantation in retinal disease: the new frontier. Ophthalmology 123(10S):S106. S0161-6420(16)30509-7 [pii]Google Scholar
  17. 17.
    Latella MC, Di Salvo MT, Cocchiarella F et al (2016) In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina. Mol Ther Nucleic Acids 5:e389. https://doi.org/10.1038/mtna.2016.92 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of OphthalmologyJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Center for Human Systems BiologyJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Institute for Cell EngineeringJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations