Advertisement

Inspection of the Human Retina by Optical Coherence Tomography

  • Thomas TheelenEmail author
  • Michel M. Teussink
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1715)

Abstract

Optical coherence tomography (OCT) is a high-resolution, three-dimensional, noninvasive imaging modality to examine the human retina. Since the introduction of spectral domain (SD-) OCT—the currently most used variant of OCT—previously unknown details of in vivo retinal morphology of a broad variety of pathologies have become visible. This chapter explains the basic principles of the OCT technology, deals with possible pitfalls in OCT examination or analysis, and hints at the use of OCT technology in functional imaging.

Key words

Optical coherence tomography Scattering Reflection Speckle Decorrelation Human Retina 

References

  1. 1.
    Wojtkowski M, Srinivasan V, Ko T et al (2004) Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express 12:2404–2422CrossRefPubMedGoogle Scholar
  2. 2.
    Nassif N, Cense B, Park B et al (2004) In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt Express 12:367–376CrossRefPubMedGoogle Scholar
  3. 3.
    Izatt J, Choma MA, Dhalla AH (2015) Theory of optical coherence tomography. In: Drexler W, Fujimoto JG (eds) Optical coherence tomography: technology and applications, 2nd edn. Springer International, Cham, pp 65–94CrossRefGoogle Scholar
  4. 4.
    Staurenghi G, Sadda S, Chakravarthy U et al (2014) International nomenclature for optical coherence tomography P. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: The in*oct consensus. Ophthalmology 121:1572–1578CrossRefPubMedGoogle Scholar
  5. 5.
    Lujan BJ, Roorda A, Knighton RW et al (2011) Revealing Henle's fiber layer using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:1486–1492CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Leung CK (2014) Diagnosing glaucoma progression with optical coherence tomography. Curr Opin Ophthalmol 25:104–111CrossRefPubMedGoogle Scholar
  7. 7.
    Weinreb RN, Khaw PT (2004) Primary open-angle glaucoma. Lancet 363:1711–1720CrossRefPubMedGoogle Scholar
  8. 8.
    Kocaoglu OP, Lee S, Jonnal RS et al (2011) Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics. Biomed Opt Express 2:748–763CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Scoles D, Flatter JA, Cooper RF et al (2015) Assessing photoreceptor structure associated with ellipsoid zone disruptions visualized with optical coherence tomography. Retina 36:91–103CrossRefGoogle Scholar
  10. 10.
    Fercher AF, Drexler W, Hitzenberger CK et al (2003) Optical coherence tomography–principles and applications. Rep Prog Phys 66:239–303CrossRefGoogle Scholar
  11. 11.
    Adler DC, Huang SW, Huber R et al (2008) Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Opt Express 16:4376–4393CrossRefPubMedGoogle Scholar
  12. 12.
    Lee TM, Oldenburg AL, Sitafalwalla S et al (2003) Engineered microsphere contrast agents for optical coherence tomography. Opt Lett 28:1546–1548CrossRefPubMedGoogle Scholar
  13. 13.
    Wang S, Larin KV (2014) Shear wave imaging optical coherence tomography (swi-oct) for ocular tissue biomechanics. Opt Lett 39:41–44CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhao Y, Chen Z, Saxer C et al (2000) Phase-resolved optical coherence tomography and optical doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt Lett 25:114–116CrossRefPubMedGoogle Scholar
  15. 15.
    Wang RK, Jacques SL, Ma Z et al (2007) Three dimensional optical angiography. Opt Express 15:4083–4097CrossRefPubMedGoogle Scholar
  16. 16.
    Wang XJ, Milner TE, Nelson JS (1995) Characterization of fluid flow velocity by optical doppler tomography. Opt Lett 20:1337–1339CrossRefPubMedGoogle Scholar
  17. 17.
    Chen Z, Milner TE, Dave D et al (1997) Optical doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt Lett 22:64–66CrossRefPubMedGoogle Scholar
  18. 18.
    Barton J, Stromski S (2005) Flow measurement without phase information in optical coherence tomography images. Opt Express 13:5234–5239CrossRefPubMedGoogle Scholar
  19. 19.
    Mariampillai A, Standish BA, Moriyama EH et al (2008) Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett 33:1530–1532CrossRefPubMedGoogle Scholar
  20. 20.
    Jia Y, Tan O, Tokayer J et al (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cunha-Vaz J, Santos T, Ribeiro L et al (2016) OCT-Leakage: a new method to identify and locate abnormal fluid accumulation in diabetic retinal edema. Invest Ophthalmol Vis Sci 57:6776–6783CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of OphthalmologyRadboud University Medical Center (Radboudumc)NijmegenThe Netherlands

Personalised recommendations