Advertisement

Measuring Central Retinal Sensitivity Using Microperimetry

  • Mays Talib
  • Jasleen K. Jolly
  • Camiel J. F. BoonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1715)

Abstract

Microperimetry is an increasingly often used method of assessing the sensitivity of the central macula, analyzing fixation capabilities and loci, and accurately combining structural and functional information, even in the absence of stable fixation. Ongoing gene therapy trials have targeted the central retina, and utilized microperimetry as a main outcome measure for changes in retinal function. In retinal treatment planning, microperimetry has been used to assess the potential therapeutic window of opportunity. In the following pages, we briefly review the necessary steps to perform the Macular Integrity Assessment (MAIA) microperimetry.

Key words

Microperimetry MAIA Retinal sensitivity 

References

  1. 1.
    Midena E (2013) Microperimetry and multimodal retinal imaging. Springer Science & Business Media, Germany. 196pGoogle Scholar
  2. 2.
    Acton JH, Greenstein VC (2013) Fundus-driven perimetry (microperimetry) compared to conventional static automated perimetry: similarities, differences, and clinical applications. Can J Ophthalmol 48:358–363CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rohrschneider K, Gluck R, Becker M et al (1997) Scanning laser fundus perimetry before laser photocoagulation of well defined choroidal neovascularisation. Br J Ophthalmol 81:568–573CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Meleth AD, Mettu P, Agrón E et al (2011) Changes in retinal sensitivity in geographic atrophy progression as measured by microperimetry. Invest Ophthalmol Vis Sci 52:1119–1126CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Simunovic MP, Xue K, Jolly JK et al (2017) Structural and functional recovery following limited iatrogenic macular detachment for retinal gene therapy. JAMA Ophthalmol 135:234–241CrossRefPubMedGoogle Scholar
  6. 6.
    Battu R, Khanna A, Hegde B et al (2015) Correlation of structure and function of the macula in patients with retinitis pigmentosa. Eye (Lond) 29:895–901CrossRefGoogle Scholar
  7. 7.
    Chen FK, Patel PJ, Xing W et al (2009) Test-retest variability of microperimetry using the Nidek MP1 in patients with macular disease. Invest Ophthalmol Vis Sci 50:3464–3472CrossRefPubMedGoogle Scholar
  8. 8.
    Cideciyan AV, Swider M, Aleman TS et al (2012) Macular function in macular degenerations: repeatability of microperimetry as a potential outcome measure for ABCA4-associated retinopathy trials. Invest Ophthalmol Vis Sci 53:841–852CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wu Z, Ayton LN, Guymer RH et al (2013) Intrasession test-retest variability of microperimetry in age-related macular degeneration. Invest Ophthalmol Vis Sci 54:7378–7385CrossRefPubMedGoogle Scholar
  10. 10.
    Midena E, Vujosevic S, Convento E et al (2007) Microperimetry and fundus autofluorescence in patients with early age-related macular degeneration. Br J Ophthalmol 91:1499–1503CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liu H et al (2015) Retinal sensitivity is a valuable complementary measurement to visual acuity—a microperimetry study in patients with maculopathies. Graefes Arch Clin Exp Ophthalmol 253:2137–2142CrossRefPubMedGoogle Scholar
  12. 12.
    Markowitz SN, Reyes SV (2013) Microperimetry and clinical practice: an evidence-based review. Can J Ophthalmol 48:350–357CrossRefPubMedGoogle Scholar
  13. 13.
    Verboschi F, Domanico D, Nebbioso M et al (2013) New trends in visual rehabilitation with MP-1 microperimeter biofeedback: optic neural dysfunction. Funct Neurol 28:285–291PubMedGoogle Scholar
  14. 14.
    Morales MU, Saker S, Amoaku WM (2015) Bilateral eccentric vision training on pseudovitelliform dystrophy with microperimetry biofeedback. BMJ Case Rep. https://doi.org/10.1136/bcr-2014-207969
  15. 15.
    Zobor D, Werner A, Stanzial F et al (2017) The clinical phenotype of CNGA3-related achromatopsia: pretreatment characterization in preparation of a gene replacement therapy trial. Invest Ophthalmol Vis Sci 58:821–832CrossRefPubMedGoogle Scholar
  16. 16.
    MacLaren RE, Groppe M, Barnard AR et al (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383:1129–1137CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sundaram V, Wilde C, Aboshiha J et al (2014) Retinal structure and function in achromatopsia: implications for gene therapy. Ophthalmology 121:234–245CrossRefPubMedGoogle Scholar
  18. 18.
    Aboshiha J, Dubis AM, Cowing J et al (2014) A prospective longitudinal study of retinal structure and function in achromatopsia. Invest Ophthalmol Vis Sci 55:5733–5743CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Testa F, Rossi S, Sodi A et al (2012) Correlation between photoreceptor layer integrity and visual function in patients with Stargardt disease: implications for gene therapy. Invest Ophthalmol Vis Sci 53:4409–4415CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Han RC, Jolly JK, Xue K et al (2016) Effects of pupil dilation on MAIA microperimetry. Clin Exp Ophthalmol. https://doi.org/10.1111/ceo.12907.
  21. 21.
    Wu Z, Jung CJ, Ayton LN et al (2015) Test-retest repeatability of microperimetry at the border of deep scotomas. Invest Ophthalmol Vis Sci 56:2606–2611CrossRefPubMedGoogle Scholar
  22. 22.
    Dimopoulos IS, Tseng C, MacDonald IM (2016) Microperimetry as an outcome measure in choroideremia trials: reproducibility and beyond microperimetry as an outcome measure in CHM trials. Invest Ophthalmol Vis Sci 57:4151–4161CrossRefPubMedGoogle Scholar
  23. 23.
    Jones PR, Yasoubi N, Nardini M et al (2016) Feasibility of Macular Integrity Assessment (MAIA) microperimetry in children: sensitivity, reliability, and fixation stability in healthy observers. Invest Ophthalmol Vis Sci 57:6349–6359CrossRefPubMedGoogle Scholar
  24. 24.
    Salvatore S, Fishman GA, McAnany JJ et al (2014) Association of dark-adapted visual function with retinal structural changes in patients with Stargardt disease. Retina 34:989–995CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Morales MU, Villani GM, Turra F et al (2014) Dynamic multifixation target for microperimetry to use in patients with large central scotoma. Invest Ophthalmol Vis Sci 55:4139–4139. ARVO Annual Meeting AbstractGoogle Scholar
  26. 26.
    Scuderi G, Verboschi F, Domanico D et al (2016) Fixation improvement through biofeedback rehabilitation in Stargardt disease. Case Rep Med 2016:4264829CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ueda-Consolvo T, Otsuka M, Hayashi Y et al (2015) Microperimetric biofeedback training improved visual acuity after successful macular hole surgery. J Ophthalmol 2015:572942CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Mays Talib
    • 1
  • Jasleen K. Jolly
    • 2
    • 3
  • Camiel J. F. Boon
    • 1
    • 4
    Email author
  1. 1.Department of OphthalmologyLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Oxford Eye HospitalJohn Radcliffe HospitalOxfordUK
  3. 3.Nuffield Laboratory of Ophthalmology and Oxford Biomedical Research CenterUniversity of OxfordOxfordUK
  4. 4.Department of OphthalmologyAcademic Medical Center, University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations