Advertisement

Optogenetic Retinal Gene Therapy with the Light Gated GPCR Vertebrate Rhodopsin

  • Benjamin M. Gaub
  • Michael H. Berry
  • Meike Visel
  • Amy Holt
  • Ehud Y. Isacoff
  • John G. Flannery
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1715)

Abstract

In retinal disease, despite the loss of light sensitivity as photoreceptors die, many retinal interneurons survive in a physiologically and metabolically functional state for long periods. This provides an opportunity for treatment by genetically adding a light sensitive function to these cells. Optogenetic therapies are in development, but, to date, they have suffered from low light sensitivity and narrow dynamic response range of microbial opsins. Expression of light-sensitive G protein coupled receptors (GPCRs), such as vertebrate rhodopsin , can increase sensitivity by signal amplification, as shown by several groups. Here, we describe the methods to (1) express light gated GPCRs in retinal neurons, (2) record light responses in retinal explants in vitro, (3) record cortical light responses in vivo, and (4) test visually guided behavior in treated mice.

Key words

Retinitis pigmentosa Congenital blindness Retinal gene therapy Optogenetics Translational medicine Visual prosthetics Light-gated receptors 

References

  1. 1.
    Henriksen BS, Marc RE, Bernstein PS (2014) Optogenetics for retinal disorders. J Ophthalmic Vis Res 9:374–382PubMedPubMedCentralGoogle Scholar
  2. 2.
    Marc R, Pfeiffer R, Jones B (2014) Retinal prosthetics, optogenetics, and chemical photoswitches. ACS Chem Neurosci 5:895–901CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Busskamp V, Duebel J, Balya D et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–417CrossRefPubMedGoogle Scholar
  4. 4.
    Busskamp V, Picaud S, Sahel JA et al (2012) Optogenetic therapy for retinitis pigmentosa. Gene Ther 19:169–175CrossRefPubMedGoogle Scholar
  5. 5.
    Nirenberg S, Pandarinath C (2012) Retinal prosthetic strategy with the capacity to restore normal vision. Proc Natl Acad Sci U S A 109:15012–15017CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Doroudchi MM, Greenberg KP, Zorzos AN et al (2011) Towards optogenetic sensory replacement. Conf Proc IEEE Eng Med Biol Soc 2011:3139–3141PubMedPubMedCentralGoogle Scholar
  7. 7.
    Doroudchi MM, Greenberg KP, Liu J et al (2011) Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 19:1220–1229CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Thyagarajan S, van Wyk M, Lehmann K et al (2010) Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci 30:8745–8758CrossRefPubMedGoogle Scholar
  9. 9.
    Lagali PS, Balya D, Awatramani GB et al (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11:667–675CrossRefPubMedGoogle Scholar
  10. 10.
    Bi A, Cui J, Ma YP et al (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Berger W, Kloeckener-Gruissem B, Neidhardt J (2010) The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 29:335–375CrossRefPubMedGoogle Scholar
  12. 12.
    Shintani K, Shechtman DL, Gurwood AS (2009) Review and update: current treatment trends for patients with retinitis pigmentosa. Optometry 80:384–401CrossRefPubMedGoogle Scholar
  13. 13.
    Curcio CA, Owsley C, Jackson GR (2000) Spare the rods, save the cones in aging and age-related maculopathy. Invest Ophthalmol Vis Sci 41:2015–2018PubMedGoogle Scholar
  14. 14.
    Ho AC, Humayun MS, Dorn JD et al (2015) Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology 122:1547–1554CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mazzoni F, Novelli E, Strettoi E (2008) Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. J Neurosci 28:14282–14292CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Haverkamp S, Michalakis S, Claes E et al (2006) Synaptic plasticity in CNGA3(−/−) mice: cone bipolar cells react on the missing cone input and form ectopic synapses with rods. J Neurosci 26:5248–5255CrossRefPubMedGoogle Scholar
  17. 17.
    RetroSense Therapeutics Phase I/II Clinical Trial for RST-001; trial #NCT02556736. www.clinicaltrials.gov.
  18. 18.
    Grossman N, Nikolic K, Grubb MS et al (2011) High-frequency limit of neural stimulation with ChR2. Conf Proc IEEE Eng Med Biol Soc 2011:4167–4170PubMedGoogle Scholar
  19. 19.
    Grossman N, Nikolic K, Toumazou C et al (2011) Modeling study of the light stimulation of a neuron cell with channelrhodopsin-2 mutants. IEEE Trans Biomed Eng 58:1742–1751CrossRefPubMedGoogle Scholar
  20. 20.
    Cehajic-Kapetanovic J, Eleftheriou C, Allen AE et al (2015) Restoration of vision with ectopic expression of human rod opsin. Curr Biol 25:2111–2122CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
  22. 22.
    Gaub BM, Berry MH, Holt AE (2015) Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol Ther 23:1562–1571CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Westenskow PD, Kurihara T, Bravo S et al (2015) Performing subretinal injections in rodents to deliver retinal pigment epithelium cells in suspension. J Vis Exp 95:52247Google Scholar
  24. 24.
    Flannery JG, Visel M (2013) Adeno-associated viral vectors for gene therapy of inherited retinal degenerations. Methods Mol Biol 935:351–369CrossRefPubMedGoogle Scholar
  25. 25.
    Dalkara D, Byrne LC, Klimczak RR et al (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5:189ra176CrossRefGoogle Scholar
  26. 26.
    Petrs-Silva H, Dinculescu A, Li Q et al (2011) Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 19:293–301CrossRefPubMedGoogle Scholar
  27. 27.
    Mutter M, Benkner B, Münch T (2017) Optogenetik als mögliche Therapie bei degenerativen Netzhauterkrankungen. Med Genet 29:239–247Google Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Benjamin M. Gaub
    • 1
  • Michael H. Berry
    • 2
  • Meike Visel
    • 2
  • Amy Holt
    • 2
  • Ehud Y. Isacoff
    • 2
    • 3
    • 4
  • John G. Flannery
    • 5
    • 6
    • 7
  1. 1.Department of Biosystems Science and Engineering (D-BSSE)Eidgenössische Technische Hochschule (ETH) ZürichBaselSwitzerland
  2. 2.Department of Molecular and Cell BiologyUniversity of California BerkeleyBerkeleyUSA
  3. 3.Physical Bioscience DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyUSA
  5. 5.Vision Science Graduate Group, School of OptometryUniversity of CaliforniaBerkeleyUSA
  6. 6.The Helen Wills Neuroscience Institute, University of CaliforniaBerkeleyUSA
  7. 7.Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations