Advertisement

Emerging Concepts in Innate Immunity

  • Karin Pelka
  • Dominic De NardoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1714)

Abstract

This review introduces recent concepts in innate immunity highlighting some of the latest exciting findings. These include: the discovery of the initiator of pyroptosis, Gasdermin D, and mechanisms of inflammatory caspases in innate immune signaling; the formation of oligomeric signalosomes downstream of innate immune receptors; mechanisms that shape innate immune responses, such as cellular homeostasis, cell metabolism, and pathogen viability; rapid methods of cell-to-cell communication; the interplay between the host and its microbiome and the concept of innate immunological memory. Furthermore, we discuss open questions and illustrate how technological advances, such as CRISPR/Cas9, may provide important answers for outstanding questions in the field of innate immunity.

Keywords

Innate immunity PRRs Pyroptosis Cell death Gasdermin D ASC MAVS Myddosome cGAS Caspase Innate immune memory CRISPR/Cas9 

References

  1. 1.
    Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826. https://doi.org/10.1038/nature06246 PubMedCrossRefGoogle Scholar
  2. 2.
    Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995. https://doi.org/10.1038/ni1112 PubMedCrossRefGoogle Scholar
  3. 3.
    Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13PubMedCrossRefGoogle Scholar
  4. 4.
    Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045. https://doi.org/10.1146/annurev.iy.12.040194.005015 PubMedCrossRefGoogle Scholar
  5. 5.
    Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566):298–300. https://doi.org/10.1126/science.1068883 PubMedCrossRefGoogle Scholar
  6. 6.
    Cai X, Chiu YH, Chen ZJ (2014) The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell 54(2):289–296. https://doi.org/10.1016/j.molcel.2014.03.040 PubMedCrossRefGoogle Scholar
  7. 7.
    Aglietti RA, Dueber EC (2017) Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends Immunol 38(4):261–271. https://doi.org/10.1016/j.it.2017.01.003 PubMedCrossRefGoogle Scholar
  8. 8.
    He Y, Hara H, Nunez G (2016) Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci 41(12):1012–1021. https://doi.org/10.1016/j.tibs.2016.09.002 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Man SM, Kanneganti TD (2016) Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol 16(1):7–21. https://doi.org/10.1038/nri.2015.7 PubMedCrossRefGoogle Scholar
  10. 10.
    Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411. https://doi.org/10.1038/nri3452 PubMedCrossRefGoogle Scholar
  11. 11.
    Gay NJ, Gangloff M, O’Neill LA (2011) What the myddosome structure tells us about the initiation of innate immunity. Trends Immunol 32(3):104–109. https://doi.org/10.1016/j.it.2010.12.005 PubMedCrossRefGoogle Scholar
  12. 12.
    Gay NJ, Symmons MF, Gangloff M, Bryant CE (2014) Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 14(8):546–558. https://doi.org/10.1038/nri3713 PubMedCrossRefGoogle Scholar
  13. 13.
    Cai X, Chen ZJ (2014) Prion-like polymerization as a signaling mechanism. Trends Immunol 35(12):622–630. https://doi.org/10.1016/j.it.2014.10.003 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gao D, Wu J, YT W, Du F, Aroh C, Yan N, Sun L, Chen ZJ (2013) Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341(6148):903–906. https://doi.org/10.1126/science.1240933 PubMedCrossRefGoogle Scholar
  15. 15.
    Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, Hopfner KP, Ludwig J, Hornung V (2013) cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498(7454):380–384. https://doi.org/10.1038/nature12306 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hornung V, Hartmann R, Ablasser A, Hopfner KP (2014) OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat Rev Immunol 14(8):521–528. https://doi.org/10.1038/nri3719 PubMedCrossRefGoogle Scholar
  17. 17.
    Chan MP, Onji M, Fukui R, Kawane K, Shibata T, Saitoh S, Ohto U, Shimizu T, Barber GN, Miyake K (2015) DNase II-dependent DNA digestion is required for DNA sensing by TLR9. Nat Commun 6:5853. https://doi.org/10.1038/ncomms6853 PubMedCrossRefGoogle Scholar
  18. 18.
    Pawaria S, Moody K, Busto P, Nundel K, Choi CH, Ghayur T, Marshak-Rothstein A (2015) Cutting edge: DNase II deficiency prevents activation of autoreactive B cells by double-stranded DNA endogenous ligands. J Immunol 194(4):1403–1407. https://doi.org/10.4049/jimmunol.1402893 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Brubaker SW, Bonham KS, Zanoni I, Kagan JC (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257–290. https://doi.org/10.1146/annurev-immunol-032414-112240 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Pelka K, Shibata T, Miyake K, Latz E (2016) Nucleic acid-sensing TLRs and autoimmunity: novel insights from structural and cell biology. Immunol Rev 269(1):60–75. https://doi.org/10.1111/imr.12375 PubMedCrossRefGoogle Scholar
  21. 21.
    Sander LE, Davis MJ, Boekschoten MV, Amsen D, Dascher CC, Ryffel B, Swanson JA, Muller M, Blander JM (2011) Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474(7351):385–389. https://doi.org/10.1038/nature10072 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mourao-Sa D, Roy S, Blander JM (2013) Vita-PAMPs: signatures of microbial viability. Adv Exp Med Biol 785:1–8. https://doi.org/10.1007/978-1-4614-6217-0_1 PubMedCrossRefGoogle Scholar
  23. 23.
    Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A, Engels G, Brenker C, Nordhoff M, Mirandola SR, Al-Amoudi A, Mangan MS, Zimmer S, Monks BG, Fricke M, Schmidt RE, Espevik T, Jones B, Jarnicki AG, Hansbro PM, Busto P, Marshak-Rothstein A, Hornemann S, Aguzzi A, Kastenmuller W, Latz E (2014) The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol 15(8):727–737. https://doi.org/10.1038/ni.2913 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Baroja-Mazo A, Martin-Sanchez F, Gomez AI, Martinez CM, Amores-Iniesta J, Compan V, Barbera-Cremades M, Yague J, Ruiz-Ortiz E, Anton J, Bujan S, Couillin I, Brough D, Arostegui JI, Pelegrin P (2014) The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 15(8):738–748. https://doi.org/10.1038/ni.2919 PubMedCrossRefGoogle Scholar
  25. 25.
    Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T, Latz E, Hornung V (2013) Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503(7477):530–534. https://doi.org/10.1038/nature12640 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Thaiss CA, Zmora N, Levy M, Elinav E (2016) The microbiome and innate immunity. Nature 535(7610):65–74. https://doi.org/10.1038/nature18847 PubMedCrossRefGoogle Scholar
  27. 27.
    Levy M, Thaiss CA, Elinav E (2016) Metabolites: messengers between the microbiota and the immune system. Genes Dev 30(14):1589–1597. https://doi.org/10.1101/gad.284091.116 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185. https://doi.org/10.1038/nature10809 PubMedPubMedCentralGoogle Scholar
  29. 29.
    Levy M, Thaiss CA, Zeevi D, Dohnalova L, Zilberman-Schapira G, Mahdi JA, David E, Savidor A, Korem T, Herzig Y, Pevsner-Fischer M, Shapiro H, Christ A, Harmelin A, Halpern Z, Latz E, Flavell RA, Amit I, Segal E, Elinav E (2015) Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163(6):1428–1443. https://doi.org/10.1016/j.cell.2015.10.048 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, O’Neill LA, Xavier RJ (2016) Trained immunity: a program of innate immune memory in health and disease. Science 352(6284):aaf1098. https://doi.org/10.1126/science.aaf1098 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    De Nardo D (2015) Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine 74(2):181–189. https://doi.org/10.1016/j.cyto.2015.02.025 PubMedCrossRefGoogle Scholar
  32. 32.
    Motshwene PG, Moncrieffe MC, Grossmann JG, Kao C, Ayaluru M, Sandercock AM, Robinson CV, Latz E, Gay NJ (2009) An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J Biol Chem 284(37):25404–25411. https://doi.org/10.1074/jbc.M109.022392 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465(7300):885–890. https://doi.org/10.1038/nature09121 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146(3):448–461. https://doi.org/10.1016/j.cell.2011.06.041 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Xu H, He X, Zheng H, Huang LJ, Hou F, Yu Z, de la Cruz MJ, Borkowski B, Zhang X, Chen ZJ, Jiang QX (2014) Structural basis for the prion-like MAVS filaments in antiviral innate immunity. Elife 3:e01489. https://doi.org/10.7554/eLife.01489 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Cai X, Chen J, Xu H, Liu S, Jiang QX, Halfmann R, Chen ZJ (2014) Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156(6):1207–1222. https://doi.org/10.1016/j.cell.2014.01.063 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Dick MS, Sborgi L, Ruhl S, Hiller S, Broz P (2016) ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nat Commun 7:11929. https://doi.org/10.1038/ncomms11929 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141(4):668–681. https://doi.org/10.1016/j.cell.2010.04.018 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, Taya C, Taniguchi T (2005) Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434(7036):1035–1040. https://doi.org/10.1038/nature03547 PubMedCrossRefGoogle Scholar
  40. 40.
    Guiducci C, Ott G, Chan JH, Damon E, Calacsan C, Matray T, Lee KD, Coffman RL, Barrat FJ (2006) Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med 203(8):1999–2008. https://doi.org/10.1084/jem.20060401 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sasai M, Linehan MM, Iwasaki A (2010) Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3. Science 329(5998):1530–1534. https://doi.org/10.1126/science.1187029 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 9(4):361–368. https://doi.org/10.1038/ni1569 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, Barton GM, Granucci F, Kagan JC (2011) CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147(4):868–880. https://doi.org/10.1016/j.cell.2011.09.051 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Miao EA, Andersen-Nissen E, Warren SE, Aderem A (2007) TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin Immunopathol 29(3):275–288. https://doi.org/10.1007/s00281-007-0078-z PubMedCrossRefGoogle Scholar
  45. 45.
    Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596–600. https://doi.org/10.1038/nature10510 PubMedCrossRefGoogle Scholar
  46. 46.
    Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477(7366):592–595. https://doi.org/10.1038/nature10394 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396):2085–2088PubMedCrossRefGoogle Scholar
  48. 48.
    Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526(7575):666–671. https://doi.org/10.1038/nature15541 PubMedCrossRefGoogle Scholar
  49. 49.
    Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514(7521):187–192. https://doi.org/10.1038/nature13683 PubMedGoogle Scholar
  50. 50.
    Baker PJ, Boucher D, Bierschenk D, Tebartz C, Whitney PG, D’Silva DB, Tanzer MC, Monteleone M, Robertson AA, Cooper MA, Alvarez-Diaz S, Herold MJ, Bedoui S, Schroder K, Masters SL (2015) NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. Eur J Immunol 45(10):2918–2926. https://doi.org/10.1002/eji.201545655 PubMedCrossRefGoogle Scholar
  51. 51.
    Schmid-Burgk JL, Gaidt MM, Schmidt T, Ebert TS, Bartok E, Hornung V (2015) Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. Eur J Immunol 45(10):2911–2917. https://doi.org/10.1002/eji.201545523 PubMedCrossRefGoogle Scholar
  52. 52.
    Ganeshan K, Chawla A (2014) Metabolic regulation of immune responses. Annu Rev Immunol 32:609–634. https://doi.org/10.1146/annurev-immunol-032713-120236 PubMedCrossRefGoogle Scholar
  53. 53.
    O’Neill LA, Pearce EJ (2016) Immunometabolism governs dendritic cell and macrophage function. J Exp Med 213(1):15–23. https://doi.org/10.1084/jem.20151570 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, Cross JR, Jung E, Thompson CB, Jones RG, Pearce EJ (2010) Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115(23):4742–4749. https://doi.org/10.1182/blood-2009-10-249540 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Everts B, Amiel E, Huang SC, Smith AM, Chang CH, Lam WY, Redmann V, Freitas TC, Blagih J, van der Windt GJ, Artyomov MN, Jones RG, Pearce EL, Pearce EJ (2014) TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat Immunol 15(4):323–332. https://doi.org/10.1038/ni.2833 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Everts B, Amiel E, van der Windt GJ, Freitas TC, Chott R, Yarasheski KE, Pearce EL, Pearce EJ (2012) Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120(7):1422–1431. https://doi.org/10.1182/blood-2012-03-419747 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Jha AK, Huang SC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall J, Everts B, Pearce EJ, Driggers EM, Artyomov MN (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42(3):419–430. https://doi.org/10.1016/j.immuni.2015.02.005 PubMedCrossRefGoogle Scholar
  58. 58.
    Liston A, Masters SL (2017) Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol 17(3):208–214. https://doi.org/10.1038/nri.2016.151 PubMedCrossRefGoogle Scholar
  59. 59.
    Compan V, Baroja-Mazo A, Lopez-Castejon G, Gomez AI, Martinez CM, Angosto D, Montero MT, Herranz AS, Bazan E, Reimers D, Mulero V, Pelegrin P (2012) Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37(3):487–500. https://doi.org/10.1016/j.immuni.2012.06.013 PubMedCrossRefGoogle Scholar
  60. 60.
    De Nardo D, De Nardo CM, Latz E (2014) New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. Am J Pathol 184(1):42–54. https://doi.org/10.1016/j.ajpath.2013.09.007 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38(6):1142–1153. https://doi.org/10.1016/j.immuni.2013.05.016 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Xu H, Yang J, Gao W, Li L, Li P, Zhang L, Gong YN, Peng X, Xi JJ, Chen S, Wang F, Shao F (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513(7517):237–241. https://doi.org/10.1038/nature13449 PubMedCrossRefGoogle Scholar
  63. 63.
    Kim ML, Chae JJ, Park YH, De Nardo D, Stirzaker RA, Ko HJ, Tye H, Cengia L, DiRago L, Metcalf D, Roberts AW, Kastner DL, Lew AM, Lyras D, Kile BT, Croker BA, Masters SL (2015) Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1beta. J Exp Med 212(6):927–938. https://doi.org/10.1084/jem.20142384 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    West AP, Shadel GS (2017) Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 17:363. https://doi.org/10.1038/nri.2017.21 PubMedCrossRefGoogle Scholar
  65. 65.
    Bridgeman A, Maelfait J, Davenne T, Partridge T, Peng Y, Mayer A, Dong T, Kaever V, Borrow P, Rehwinkel J (2015) Viruses transfer the antiviral second messenger cGAMP between cells. Science 349(6253):1228–1232. https://doi.org/10.1126/science.aab3632 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Gentili M, Kowal J, Tkach M, Satoh T, Lahaye X, Conrad C, Boyron M, Lombard B, Durand S, Kroemer G, Loew D, Dalod M, Thery C, Manel N (2015) Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 349(6253):1232–1236. https://doi.org/10.1126/science.aab3628 PubMedCrossRefGoogle Scholar
  67. 67.
    Xu S, Ducroux A, Ponnurangam A, Vieyres G, Franz S, Musken M, Zillinger T, Malassa A, Ewald E, Hornung V, Barchet W, Haussler S, Pietschmann T, Goffinet C (2016) cGAS-mediated innate immunity spreads intercellularly through HIV-1 Env-induced membrane fusion sites. Cell Host Microbe 20(4):443–457. https://doi.org/10.1016/j.chom.2016.09.003 PubMedCrossRefGoogle Scholar
  68. 68.
    Vanaja SK, Rathinam VA, Fitzgerald KA (2015) Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25(5):308–315. https://doi.org/10.1016/j.tcb.2014.12.009 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Man SM, Kanneganti TD (2015) Regulation of inflammasome activation. Immunol Rev 265(1):6–21. https://doi.org/10.1111/imr.12296 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Rathinam VA, Fitzgerald KA (2016) Inflammasome complexes: emerging mechanisms and effector functions. Cell 165(4):792–800. https://doi.org/10.1016/j.cell.2016.03.046 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665. https://doi.org/10.1038/nature15514 PubMedCrossRefGoogle Scholar
  72. 72.
    Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535(7610):111–116. https://doi.org/10.1038/nature18590 PubMedCrossRefGoogle Scholar
  73. 73.
    Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535(7610):153–158. https://doi.org/10.1038/nature18629 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, Ciferri C, Dixit VM, Dueber EC (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci U S A 113(28):7858–7863. https://doi.org/10.1073/pnas.1607769113 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M, Su L, Pratt D, CH B, Hildebrand S, Lyon S, Scott L, Quan J, Sun Q, Russell J, Arnett S, Jurek P, Chen D, Kravchenko VV, Mathison JC, Moresco EM, Monson NL, Ulevitch RJ, Beutler B (2016) NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol 17(3):250–258. https://doi.org/10.1038/ni.3333 PubMedCrossRefGoogle Scholar
  76. 76.
    Vince JE, Silke J (2016) The intersection of cell death and inflammasome activation. Cell Mol Life Sci 73(11-12):2349–2367. https://doi.org/10.1007/s00018-016-2205-2 PubMedCrossRefGoogle Scholar
  77. 77.
    Chen KW, Gross CJ, Sotomayor FV, Stacey KJ, Tschopp J, Sweet MJ, Schroder K (2014) The neutrophil NLRC4 inflammasome selectively promotes IL-1beta maturation without pyroptosis during acute Salmonella challenge. Cell Rep 8(2):570–582. https://doi.org/10.1016/j.celrep.2014.06.028 PubMedCrossRefGoogle Scholar
  78. 78.
    Karmakar M, Katsnelson M, Malak HA, Greene NG, Howell SJ, Hise AG, Camilli A, Kadioglu A, Dubyak GR, Pearlman E (2015) Neutrophil IL-1beta processing induced by pneumolysin is mediated by the NLRP3/ASC inflammasome and caspase-1 activation and is dependent on K+ efflux. J Immunol 194(4):1763–1775. https://doi.org/10.4049/jimmunol.1401624 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Conos SA, Lawlor KE, Vaux DL, Vince JE, Lindqvist LM (2016) Cell death is not essential for caspase-1-mediated interleukin-1beta activation and secretion. Cell Death Differ 23(11):1827–1838. https://doi.org/10.1038/cdd.2016.69 PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Wallach D, Kang TB, Dillon CP, Green DR (2016) Programmed necrosis in inflammation: toward identification of the effector molecules. Science 352(6281):aaf2154. https://doi.org/10.1126/science.aaf2154 PubMedCrossRefGoogle Scholar
  81. 81.
    Conos SA, Chen KW, De Nardo D, Hara H, Whitehead L, Nunez G, Masters SL, Murphy JM, Schroder K, Vaux DL, Lawlor KE, Lindqvist LM, Vince JE (2017) Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci U S A 114(6):E961–E969. https://doi.org/10.1073/pnas.1613305114 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F, Robertson AA, Cooper MA, Graf T, Hornung V (2016) Human monocytes engage an alternative inflammasome pathway. Immunity 44(4):833–846. https://doi.org/10.1016/j.immuni.2016.01.012 PubMedCrossRefGoogle Scholar
  83. 83.
    Weavers H, Evans IR, Martin P, Wood W (2016) Corpse engulfment generates a molecular memory that primes the macrophage inflammatory response. Cell 165(7):1658–1671. https://doi.org/10.1016/j.cell.2016.04.049 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao NA, Aghajanirefah A, Manjeri GR, Li Y, Ifrim DC, Arts RJ, van der Veer BM, Deen PM, Logie C, O’Neill LA, Willems P, van de Veerdonk FL, van der Meer JW, Ng A, Joosten LA, Wijmenga C, Stunnenberg HG, Xavier RJ, Netea MG (2014) mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345(6204):1250684. https://doi.org/10.1126/science.1250684 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, Cheng SC, Ratter J, Berentsen K, van der Ent MA, Sharifi N, Janssen-Megens EM, Ter Huurne M, Mandoli A, van Schaik T, Ng A, Burden F, Downes K, Frontini M, Kumar V, Giamarellos-Bourboulis EJ, Ouwehand WH, van der Meer JW, Joosten LA, Wijmenga C, Martens JH, Xavier RJ, Logie C, Netea MG, Stunnenberg HG (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345(6204):1251086. https://doi.org/10.1126/science.1251086 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Blok BA, Arts RJ, van Crevel R, Benn CS, Netea MG (2015) Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J Leukoc Biol 98(3):347–356. https://doi.org/10.1189/jlb.5RI0315-096R PubMedCrossRefGoogle Scholar
  87. 87.
    Bekkering S, Joosten LA, van der Meer JW, Netea MG, Riksen NP (2015) The epigenetic memory of monocytes and macrophages as a novel drug target in atherosclerosis. Clin Ther 37(4):914–923. https://doi.org/10.1016/j.clinthera.2015.01.008 PubMedCrossRefGoogle Scholar
  88. 88.
    De Nardo D, Labzin LI, Kono H, Seki R, Schmidt SV, Beyer M, Xu D, Zimmer S, Lahrmann C, Schildberg FA, Vogelhuber J, Kraut M, Ulas T, Kerksiek A, Krebs W, Bode N, Grebe A, Fitzgerald ML, Hernandez NJ, Williams BR, Knolle P, Kneilling M, Rocken M, Lutjohann D, Wright SD, Schultze JL, Latz E (2014) High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol 15(2):152–160. https://doi.org/10.1038/ni.2784 PubMedCrossRefGoogle Scholar
  89. 89.
    Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40(2):274–288. https://doi.org/10.1016/j.immuni.2014.01.006 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721. https://doi.org/10.1038/nri3520 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Tricoci P, D’Andrea DM, Gurbel PA, Yao Z, Cuchel M, Winston B, Schott R, Weiss R, Blazing MA, Cannon L, Bailey A, Angiolillo DJ, Gille A, Shear CL, Wright SD, Alexander JH (2015) Infusion of reconstituted high-density lipoprotein, CSL112, in patients with atherosclerosis: safety and pharmacokinetic results from a phase 2a randomized clinical trial. J Am Heart Assoc 4(8):e002171. https://doi.org/10.1161/JAHA.115.002171 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Moore KJ, Fisher EA (2014) High-density lipoproteins put out the fire. Cell Metab 19(2):175–176. https://doi.org/10.1016/j.cmet.2014.01.009 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Zhang H, Reilly MP (2014) Anti-inflammatory effects of high-density lipoprotein through activating transcription factor 3: benefit beyond cholesterol transport-dependent processes. Arterioscler Thromb Vasc Biol 34(6):e11–e12. https://doi.org/10.1161/ATVBAHA.114.303553 PubMedCrossRefGoogle Scholar
  94. 94.
    Schmid-Burgk JL, Chauhan D, Schmidt T, Ebert TS, Reinhardt J, Endl E, Hornung V (2016) A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J Biol Chem 291(1):103–109. https://doi.org/10.1074/jbc.C115.700492 PubMedCrossRefGoogle Scholar
  95. 95.
    He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ, Han J (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 25(12):1285–1298. https://doi.org/10.1038/cr.2015.139 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    He Y, Zeng MY, Yang D, Motro B, Nunez G (2016) NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530(7590):354–357. https://doi.org/10.1038/nature16959 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Zhang Z, Ohto U, Shibata T, Krayukhina E, Taoka M, Yamauchi Y, Tanji H, Isobe T, Uchiyama S, Miyake K, Shimizu T (2016) Structural analysis reveals that toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45(4):737–748. https://doi.org/10.1016/j.immuni.2016.09.011 PubMedCrossRefGoogle Scholar
  98. 98.
    Tanji H, Ohto U, Shibata T, Taoka M, Yamauchi Y, Isobe T, Miyake K, Shimizu T (2015) Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol 22(2):109–115. https://doi.org/10.1038/nsmb.2943 PubMedCrossRefGoogle Scholar
  99. 99.
    Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, YT W, Grishin NV, Chen ZJ (2015) Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347(6227):aaa2630. https://doi.org/10.1126/science.aaa2630 PubMedCrossRefGoogle Scholar
  100. 100.
    Zhao B, Shu C, Gao X, Sankaran B, Du F, Shelton CL, Herr AB, Ji JY, Li P (2016) Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. Proc Natl Acad Sci U S A 113(24):E3403–E3412. https://doi.org/10.1073/pnas.1603269113 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE (2017) Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat Rev Drug Discov 16(2):89–100. https://doi.org/10.1038/nrd.2016.238 PubMedCrossRefGoogle Scholar
  102. 102.
    Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R (2016) Editing DNA methylation in the mammalian genome. Cell 167(1):233–247. e217. https://doi.org/10.1016/j.cell.2016.08.056 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, Zheng S, Lazo S, Jardine L, Dixon D, Stephenson E, Nilsson E, Grundberg I, McDonald D, Filby A, Li W, De Jager PL, Rozenblatt-Rosen O, Lane AA, Haniffa M, Regev A, Hacohen N (2017) Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356(6335). https://doi.org/10.1126/science.aah4573
  104. 104.
    Casanova JL, Abel L, Quintana-Murci L (2011) Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol 29:447–491. https://doi.org/10.1146/annurev-immunol-030409-101335 PubMedCrossRefGoogle Scholar
  105. 105.
    Ostring GT, Singh-Grewal D (2016) Periodic fevers and autoinflammatory syndromes in childhood. J Paediatr Child Health 52(9):865–871. https://doi.org/10.1111/jpc.13326 PubMedCrossRefGoogle Scholar
  106. 106.
    Stoffels M, Kastner DL (2016) Old dogs, new tricks: monogenic autoinflammatory disease unleashed. Annu Rev Genomics Hum Genet 17:245–272. https://doi.org/10.1146/annurev-genom-090413-025334 PubMedCrossRefGoogle Scholar
  107. 107.
    Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E (2015) The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol 10:395–424. https://doi.org/10.1146/annurev-pathol-012414-040431 PubMedCrossRefGoogle Scholar
  108. 108.
    Cui Y, Sheng Y, Zhang X (2013) Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun 41:25–33. https://doi.org/10.1016/j.jaut.2013.01.008 PubMedCrossRefGoogle Scholar
  109. 109.
    Wang CM, Chang SW, YJ W, Lin JC, Ho HH, Chou TC, Yang B, Wu J, Chen JY (2014) Genetic variations in Toll-like receptors (TLRs 3/7/8) are associated with systemic lupus erythematosus in a Taiwanese population. Sci Rep 4:3792. https://doi.org/10.1038/srep03792 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Zhang J, Zhu Q, Meng F, Lei H, Zhao Y (2014) Association study of TLR-9 polymorphisms and systemic lupus erythematosus in northern Chinese Han population. Gene 533(1):385–388. https://doi.org/10.1016/j.gene.2013.08.051 PubMedCrossRefGoogle Scholar
  111. 111.
    Laska MJ, Troldborg A, Hansen B, Stengaard-Pedersen K, Junker P, Nexo BA, Voss A (2014) Polymorphisms within Toll-like receptors are associated with systemic lupus erythematosus in a cohort of Danish females. Rheumatology (Oxford) 53(1):48–55. https://doi.org/10.1093/rheumatology/ket316 CrossRefGoogle Scholar
  112. 112.
    Lee YH, Bae SC, Kim JH, Song GG (2014) Toll-like receptor polymorphisms and rheumatoid arthritis: a systematic review. Rheumatol Int 34(1):111–116. https://doi.org/10.1007/s00296-013-2666-7 PubMedCrossRefGoogle Scholar
  113. 113.
    Lee YH, Bae SC, Song GG (2013) Meta-analysis demonstrates association between TLR polymorphisms and rheumatoid arthritis. Genet Mol Res 12(1):328–334. https://doi.org/10.4238/2013.February.7.2 PubMedCrossRefGoogle Scholar
  114. 114.
    Fernandez-Ruiz I (2016) Immune system and cardiovascular disease. Nat Rev Cardiol 13(9):503. https://doi.org/10.1038/nrcardio.2016.127 PubMedCrossRefGoogle Scholar
  115. 115.
    Woo SR, Corrales L, Gajewski TF (2015) Innate immune recognition of cancer. Annu Rev Immunol 33:445–474. https://doi.org/10.1146/annurev-immunol-032414-112043 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Broad Institute of MIT and HarvardCambridgeUSA
  2. 2.Inflammation DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleAustralia
  3. 3.Department of Medical BiologyThe University of MelbourneParkvilleAustralia

Personalised recommendations