Skip to main content
Book cover

Chaperones pp 307–320Cite as

Immunohistochemical and Flow Cytometric Analysis of Intracellular and Membrane-Bound Hsp70, as a Putative Biomarker of Glioblastoma Multiforme, Using the cmHsp70.1 Monoclonal Antibody

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1709))

Abstract

The major stress-inducible 70 kDa heat shock (stress) protein 70 (Hsp70) is frequently overexpressed in highly aggressive tumor cells and thus might serve as a tumor-specific biomarker of aggressive disease. We have previously shown that, in contrast to normal cells, tumor cells present Hsp70 on their plasma membrane. In order to elucidate the role of intracellular and membrane-bound Hsp70 as a potential tumor biomarker in glioblastoma multiforme, herein, we describe protocols for the staining of cytosolic Hsp70 in tumor formalin fixed paraffin-embedded (FFPE) sections using immunohistochemistry, and for plasma membrane-bound Hsp70 by multi-parametric flow cytometry using the cmHsp70.1 monoclonal antibody (mAb).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Burton EC, Prados MD (2000) Malignant gliomas. Curr Treat Options in Oncol 1(5):459–468

    Article  CAS  Google Scholar 

  2. Nieder C, Grosu AL, Molls M (2000) A comparison of treatment results for recurrent malignant gliomas. Cancer Treat Rev 26(6):397–409

    Article  CAS  PubMed  Google Scholar 

  3. Dazzi C, Cariello A, Giannini M, Del Duca M, Giovanis P, Fiorentini G, Leoni M, Rosti G, Turci D, Tienghi A, Vertogen B, Zumaglini F, De Giorgi U, Marangolo M (2000) A sequential chemo-radiotherapeutic treatment for patients with malignant gliomas: a phase II pilot study. Anticancer Res 20(1B):515–518

    CAS  PubMed  Google Scholar 

  4. Barrié M, Couprie C, Dufour H, Figarella-Branger D, Muracciole X, Hoang-Xuan K, Braguer D, Martin PM, Peragut JC, Grisoli F, Chinot O (2005) Temozolomide in combination with BCNU before and after radiotherapy in patients with inoperable newly diagnosed glioblastoma multiforme. Ann Oncol: Off J Eur Soc Med Oncol/ESMO 16(7):1177–1184

    Article  Google Scholar 

  5. Combs SE, Gutwein S, Thilmann C, Debus J, Schulz-Ertner D (2005) Reirradiation of recurrent WHO grade III astrocytomas using fractionated stereotactic radiotherapy (FSRT). Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al] 181(12):768–773

    Article  Google Scholar 

  6. Combs SE, Thilmann C, Edler L, Debus J, Schulz-Ertner D (2005) Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol: Off J Am Soc Clin Oncol 23(34):8863–8869

    Article  Google Scholar 

  7. Combs SE, Wagner J, Bischof M, Welzel T, Wagner F, Debus J, Schulz-Ertner D (2008) Postoperative treatment of primary glioblastoma multiforme with radiation and concomitant temozolomide in elderly patients. Int J Radiat Oncol Biol Phys 70(4):987–992

    Article  PubMed  Google Scholar 

  8. Combs SE, Wagner J, Bischof M, Welzel T, Edler L, Rausch R, Wagner F, Zabel-du Bois A, Debus J, Schulz-Ertner D (2008) Radiochemotherapy in patients with primary glioblastoma comparing two temozolomide dose regimens. Int J Radiat Oncol Biol Phys 71(4):999–1005

    Article  CAS  PubMed  Google Scholar 

  9. Frenay M, Lebrun C, Lonjon M, Bondiau PY, Chatel M (2000) Up-front chemotherapy with fotemustine (F)/cisplatin (CDDP)/etoposide (VP16) regimen in the treatment of 33 non-removable glioblastomas. Eur J Cancer 36(8):1026–1031

    Article  CAS  PubMed  Google Scholar 

  10. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  11. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466

    Article  CAS  PubMed  Google Scholar 

  12. Multhoff G, Botzler C, Wiesnet M, Eissner G, Issels R (1995) CD3 large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. Blood 86:1374–1382

    CAS  PubMed  Google Scholar 

  13. Multhoff G, Botzler C, Wiesnet M, Muller E, Meier T, Wilmanns W, Issels RD (1995) A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61:272–279

    Article  CAS  PubMed  Google Scholar 

  14. Stangl S, Gehrmann M, Riegger J, Kuhs K, Riederer I, Sievert W, Hube K, Mocikat R, Dressel R, Kremmer E, Pockley AG, Friedrich L, Vigh L, Skerra A, Multhoff G (2011) Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody. Proc Natl Acad Sci U S A 108(2):733–738

    Article  CAS  PubMed  Google Scholar 

  15. Gehrmann M, Stangl S, Foulds GA, Oellinger R, Breuninger S, Rad R, Pockley AG, Multhoff G (2014) Tumor imaging and targeting potential of an hsp70-derived 14-mer peptide. PLoS One 9(8):e105344

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gehrmann M, Pfister K, Hutzler P, Gastpar R, Margulis B, Multhoff G (2002) Effects of antineoplastic agents on cytoplasmic and membrane-bound heat shock protein 70 (Hsp70) levels. Biol Chem 383:1715–1725

    CAS  PubMed  Google Scholar 

  17. Gehrmann M, Stangl S, Kirschner A, Foulds GA, Sievert W, Doss BT, Walch A, Pockley AG, Multhoff G (2012) Immunotherapeutic targeting of membrane hsp70-expressing tumors using recombinant human granzyme B. PLoS One 7(7):e41341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pfister K, Radons J, Busch R, Tidball JG, Pfeifer M, Freitag L, Feldmann HJ, Milani V, Issels R, Multhoff G (2007) Patient survival by Hsp70 membrane phenotype: association with different routes of metastasis. Cancer 110:926–935

    Article  PubMed  Google Scholar 

  19. Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R (1997) Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol 158:4341–4350

    CAS  PubMed  Google Scholar 

  20. Multhoff G, Hightower LE (2011) Distinguishing integral and receptor-bound heat shock protein 70 (Hsp70) on the cell surface by Hsp70-specific antibodies. Cell Stress Chaperones 16(3):251–255

    Article  CAS  PubMed  Google Scholar 

  21. Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M, Hiddemann W (2001) A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 6(4):337–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Multhoff G, Pfister K, Botzler C, Jordan A, Scholz R, Schmetzer H, Burgstahler R, Hiddemann W (2000) Adoptive transfer of human natural killer cells in mice with severe combined immunodeficiency inhibits growth of Hsp70-expressing tumors. Int J Cancer 88:791–797

    Article  CAS  PubMed  Google Scholar 

  23. Gross C, Hansch D, Gastpar R, Multhoff G (2003) Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 384:267–279

    Article  CAS  PubMed  Google Scholar 

  24. Gross C, Holler E, Stangl S, Dickinson A, Pockley AG, Asea AA, Mallappa N, Multhoff G (2008) An Hsp70 peptide initiates NK cell killing of leukemic blasts after stem cell transplantation. Leuk Res 32(4):527–534

    Article  CAS  PubMed  Google Scholar 

  25. Gross C, Koelch W, DeMaio A, Arispe N, Multhoff G (2003) Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J Biol Chem 278(42):41173–41181

    Article  CAS  PubMed  Google Scholar 

  26. Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G, Pfister K, Multhoff G (2004) Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial. Clin Cancer Res 10:3699–3707

    Article  CAS  PubMed  Google Scholar 

  27. Specht HM, Ahrens N, Blankenstein C, Duell T, Fietkau R, Gaipl US, Gunther C, Gunther S, Habl G, Hautmann H, Hautmann M, Huber RM, Molls M, Offner R, Rodel C, Rodel F, Schutz M, Combs SE, Multhoff G (2015) Heat shock protein 70 (Hsp70) peptide activated natural killer (NK) cells for the treatment of patients with non-small cell lung cancer (NSCLC) after Radiochemotherapy (RCTx) - from preclinical studies to a clinical phase II trial. Front Immunol 6:162

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gehrmann M, Doss BT, Wagner M, Zettlitz KA, Kontermann RE, Foulds G, Pockley AG, Multhoff G (2011) A novel expression and purification system for the production of enzymatic and biologically active human granzyme B. J Immunol Methods 371(1–2):8–17

    Article  CAS  PubMed  Google Scholar 

  29. Milani V, Stangl S, Issels R, Gehrmann M, Wagner B, Hube K, Mayr D, Hiddemann W, Molls M, Multhoff G (2009) Anti-tumor activity of patient-derived NK cells after cell-based immunotherapy--a case report. J Transl Med 7:50

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stangl S, Gehrmann M, Dressel R, Alves F, Dullin C, Themelis G, Ntziachristos V, Staeblein E, Walch A, Winkelmann I, Multhoff G (2010) In vivo imaging of CT26 mouse tumors by using cmHsp70.1 monoclonal antibody. J Cell Mol Med 15(4):874–887

    Article  PubMed Central  Google Scholar 

  31. Stangl S, Varga J, Freysoldt B, Trajkovic-Arsic M, Siveke JT, Greten FR, Ntziachristos V, Multhoff G (2014) Selective in vivo imaging of syngeneic, spontaneous, and xenograft tumors using a novel tumor cell-specific hsp70 peptide-based probe. Cancer Res 74(23):6903–6912

    Article  CAS  PubMed  Google Scholar 

  32. Gehrmann MK, Kimm MA, Stangl S, Schmid TE, Noel PB, Rummeny EJ, Multhoff G (2015) Imaging of Hsp70-positive tumors with cmHsp70.1 antibody-conjugated gold nanoparticles. Int J Nanomedicine 10:5687–5700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang H, Liu R, Huang W (2007) A 14-mer peptide from HSP70 protein is the critical epitope which enhances NK activity against tumor cells in vivo. Immunol Investig 36(3):233–246

    Article  CAS  Google Scholar 

  34. Fouchaq B, Benaroudj N, Ebel C, Ladjimi MM (1999) Oligomerization of the 17-kDa peptide-binding domain of the molecular chaperone HSC70. Eur J Biochem 259(1–2):379–384

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Gabriele Multhoff is supported by grants of the Deutsche Forschungsgemeinschaft (SFB824/2; DFG INST95/980-1 FUGG, INST411/37-1 FUGG), the DFG Cluster of Excellence: Munich-Centre for Advanced Photonics (MAP), the Bundesministerium für Forschung und Technologie (BMBF Innovative Therapies, 01GU0823; Kompetenzverbund Strahlenforschung 02NUK038A), EU-CELLEUROPE (315963) and the German Cancer Consortium Radiation Oncology Group, Munich (DKTK-ROG).

The John van Geest Cancer Research Centre is supported by funding from the John and Lucille van Geest Foundation, Nottingham Trent University, the European Regional Development Fund (ERDF) via the Healthcare and Bioscience iNET, as delivered by Medilink East Midlands, UK and the Headcase Cancer Trust.

The University of Portsmouth Brain Tumour Research Centre is core funded by Brain Tumour Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Multhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stangl, S., Foulds, G.A., Fellinger, H., Pilkington, G.J., Pockley, A.G., Multhoff, G. (2018). Immunohistochemical and Flow Cytometric Analysis of Intracellular and Membrane-Bound Hsp70, as a Putative Biomarker of Glioblastoma Multiforme, Using the cmHsp70.1 Monoclonal Antibody. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics