Advertisement

Opportunities and Challenges in the Discovery of Allosteric Modulators of GPCRs

  • Damian Bartuzi
  • Agnieszka A. Kaczor
  • Dariusz Matosiuk
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1705)

Abstract

From the pharmacological point of view, allosteric modulators may present numerous advantages over orthosteric ligands. Growing availability of novel tools and experimental data provides a tempting opportunity to apply computational methods to improve known modulators and design novel ones. However, recent progress in understanding of complexity of allostery increases awareness of problems involved in design of modulators with desired properties. Deeper insight into phenomena such as probe dependence, altering signaling bias with minor changes in ligand structure, as well as influence of subtle endogenous allosteric factors turns out to be fundamental. These effects make the design of a modulator with precise pharmacological outcome a very challenging task, and need to be taken into consideration throughout the design process. In this chapter, we focus on nuances of targeting GPCR allosteric sites in computational drug design efforts, in particular with application of docking, virtual screening, and molecular dynamics.

Key words

Allostery Allosteric modulation GPCR Molecular dynamics Molecular docking Virtual screening Probe dependence Signal transduction Structure-based drug design Protein dynamics 

References

  1. 1.
    Christopoulos A (2014) Advances in G protein-coupled receptor allostery: from function to structure. Mol Pharmacol 86:463–478. https://doi.org/10.1124/mol.114.094342 PubMedCrossRefGoogle Scholar
  2. 2.
    Sekercioglu N, Busse JW, Mustafa RA et al (2016) Cinacalcet versus standard treatment for chronic kidney disease: a protocol for a systematic review and meta-analysis. Syst Rev 5:2. https://doi.org/10.1186/s13643-015-0177-1 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Woollard SM, Kanmogne GD (2015) Maraviroc: a review of its use in HIV infection and beyond. Drug Des Devel Ther 9:5447–5468. https://doi.org/10.2147/DDDT.S90580 PubMedPubMedCentralGoogle Scholar
  4. 4.
    Müller CE, Schiedel AC, Baqi Y (2012) Allosteric modulators of rhodopsin-like G protein-coupled receptors: opportunities in drug development. Pharmacol Ther 135:292–315. https://doi.org/10.1016/j.pharmthera.2012.06.002 PubMedCrossRefGoogle Scholar
  5. 5.
    Valant C, Felder CC, Sexton PM, Christopoulos A (2012) Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Mol Pharmacol 81:41–52. https://doi.org/10.1124/mol.111.074872 PubMedCrossRefGoogle Scholar
  6. 6.
    Schneider S, Provasi D, Filizola M (2016) How oliceridine (TRV-130) binds and stabilizes a μ-opioid receptor conformational state that selectively triggers G protein-signaling pathways. Biochemistry (Mosc) 55(46):6456–6466. https://doi.org/10.1021/acs.biochem.6b00948 CrossRefGoogle Scholar
  7. 7.
    Rankovic Z, Brust TF, Bohn LM (2016) Biased agonism: an emerging paradigm in GPCR drug discovery. Bioorg Med Chem Lett 26:241–250. https://doi.org/10.1016/j.bmcl.2015.12.024 PubMedCrossRefGoogle Scholar
  8. 8.
    Bartuzi D, Kaczor AA, Matosiuk D (2016) Interplay between two allosteric sites and their influence on agonist binding in human μ opioid receptor. J Chem Inf Model 56:563–570. https://doi.org/10.1021/acs.jcim.5b00705 PubMedCrossRefGoogle Scholar
  9. 9.
    Bartuzi D, Kaczor AA, Matosiuk D (2015) Activation and allosteric modulation of human μ opioid receptor in molecular dynamics. J Chem Inf Model 55:2421–2434. https://doi.org/10.1021/acs.jcim.5b00280 PubMedCrossRefGoogle Scholar
  10. 10.
    Sadiq SK, Guixa-Gonzalez R, Dainese E et al (2013) Molecular modeling and simulation of membrane lipid-mediated effects on GPCRs. Curr Med Chem 20:22–38PubMedCrossRefGoogle Scholar
  11. 11.
    Guixà-González R, Ramírez-Anguita JM, Kaczor AA, Selent J (2013) Simulating G protein-coupled receptors in native-like membranes: from monomers to oligomers. Methods Cell Biol 117:63–90. https://doi.org/10.1016/B978-0-12-408143-7.00004-9 PubMedCrossRefGoogle Scholar
  12. 12.
    Fenton AW (2008) Allostery: an illustrated definition for the “second secret of life”. Trends Biochem Sci 33:420–425. https://doi.org/10.1016/j.tibs.2008.05.009 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ballesteros JA, Weinstein H (1995) [19] integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In: Sealfon SC (ed) Methods neuroscience. Academic Press, San Diego, CA, pp 366–428Google Scholar
  14. 14.
    Livingston KE, Traynor JR (2014) Disruption of the Na+ ion binding site as a mechanism for positive allosteric modulation of the mu-opioid receptor. Proc Natl Acad Sci U S A 111:18369–18374. https://doi.org/10.1073/pnas.1415013111 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Azzi M, Piñeyro G, Pontier S et al (2001) Allosteric effects of G protein overexpression on the binding of beta-adrenergic ligands with distinct inverse efficacies. Mol Pharmacol 60:999–1007PubMedGoogle Scholar
  16. 16.
    Burstein ES, Spalding TA, Brann MR (1997) Pharmacology of muscarinic receptor subtypes constitutively activated by G proteins. Mol Pharmacol 51:312–319PubMedGoogle Scholar
  17. 17.
    Yan F, Mosier PD, Westkaemper RB, Roth BL (2008) Galpha-subunits differentially alter the conformation and agonist affinity of kappa-opioid receptors. Biochemistry (Mosc) 47:1567–1578. https://doi.org/10.1021/bi701476b CrossRefGoogle Scholar
  18. 18.
    Periole X (2017) Interplay of G protein-coupled receptors with the membrane: insights from supra-atomic coarse grain molecular dynamics simulations. Chem Rev 117:156–185. https://doi.org/10.1021/acs.chemrev.6b00344 PubMedCrossRefGoogle Scholar
  19. 19.
    Zheng Y, Qin L, Zacarías NVO et al (2016) Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540:458–461. https://doi.org/10.1038/nature20605 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Oswald C, Rappas M, Kean J et al (2016) Intracellular allosteric antagonism of the CCR9 receptor. Nature 540:462–465. https://doi.org/10.1038/nature20606 PubMedCrossRefGoogle Scholar
  21. 21.
    Yuan S, Vogel H, Filipek S (2013) The role of water and sodium ions in the activation of the μ-opioid receptor. Angew Chem Int Ed Engl 52:10112–10115. https://doi.org/10.1002/anie.201302244 PubMedCrossRefGoogle Scholar
  22. 22.
    Selent J, Sanz F, Pastor M, De Fabritiis G (2010) Induced effects of sodium ions on dopaminergic G-protein coupled receptors. PLoS Comput Biol 6(8):e1000884. https://doi.org/10.1371/journal.pcbi.1000884 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    van der Westhuizen ET, Valant C, Sexton PM, Christopoulos A (2015) Endogenous allosteric modulators of G protein-coupled receptors. J Pharmacol Exp Ther 353:246–260. https://doi.org/10.1124/jpet.114.221606 PubMedCrossRefGoogle Scholar
  24. 24.
    Broadhead GK, Mun H, Avlani VA et al (2011) Allosteric modulation of the calcium-sensing receptor by gamma-glutamyl peptides: inhibition of PTH secretion, suppression of intracellular cAMP levels, and a common mechanism of action with L-amino acids. J Biol Chem 286:8786–8797. https://doi.org/10.1074/jbc.M110.149724 PubMedCrossRefGoogle Scholar
  25. 25.
    Ott MC, Mishra RK, Johnson RL (1996) Modulation of dopaminergic neurotransmission in the 6-hydroxydopamine lesioned rotational model by peptidomimetic analogues of L-prolyl-L-leucyl-glycinamide. Brain Res 737:287–291PubMedCrossRefGoogle Scholar
  26. 26.
    Murdoch R, Morecroft I, MacLean MR (2003) 5-HT moduline: an endogenous inhibitor of 5-HT(1B/1D)-mediated contraction in pulmonary arteries. Br J Pharmacol 138:795–800. https://doi.org/10.1038/sj.bjp.0705123 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Conigrave AD, Quinn SJ, Brown EM (2000) L-amino acid sensing by the extracellular Ca2+−sensing receptor. Proc Natl Acad Sci U S A 97:4814–4819PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kerr DIB, Ong J (2003) Potentiation of metabotropic GABAB receptors by L-amino acids and dipeptides in rat neocortex. Eur J Pharmacol 468:103–108PubMedCrossRefGoogle Scholar
  29. 29.
    Agnati LF, Ferré S, Genedani S et al (2006) Allosteric modulation of dopamine D2 receptors by homocysteine. J Proteome Res 5:3077–3083. https://doi.org/10.1021/pr0601382 PubMedCrossRefGoogle Scholar
  30. 30.
    Molderings GJ, Menzel S, Kathmann M et al (2000) Dual interaction of agmatine with the rat alpha(2D)-adrenoceptor: competitive antagonism and allosteric activation. Br J Pharmacol 130:1706–1712. https://doi.org/10.1038/sj.bjp.0703495 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    McLatchie LM, Fraser NJ, Main MJ et al (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393:333–339. https://doi.org/10.1038/30666 PubMedCrossRefGoogle Scholar
  32. 32.
    Muff R, Bühlmann N, Fischer JA, Born W (1999) An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or −3. Endocrinology 140:2924–2927. https://doi.org/10.1210/endo.140.6.6930 PubMedCrossRefGoogle Scholar
  33. 33.
    Novoselova TV, Jackson D, Campbell DC et al (2013) Melanocortin receptor accessory proteins in adrenal gland physiology and beyond. J Endocrinol 217:R1–11. https://doi.org/10.1530/JOE-12-0501 PubMedCrossRefGoogle Scholar
  34. 34.
    El Moustaine D, Granier S, Doumazane E et al (2012) Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proc Natl Acad Sci U S A 109:16342–16347. https://doi.org/10.1073/pnas.1205838109 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    White JH, Wise A, Main MJ et al (1998) Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396:679–682. https://doi.org/10.1038/25354 PubMedCrossRefGoogle Scholar
  36. 36.
    Schonenbach NS, Hussain S, O’Malley MA (2015) Structure and function of G protein-coupled receptor oligomers: implications for drug discovery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:408–427. https://doi.org/10.1002/wnan.1319 PubMedCrossRefGoogle Scholar
  37. 37.
    Hasbi A, O’Dowd BF, George SR (2011) Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Mol Brain 4:26. https://doi.org/10.1186/1756-6606-4-26 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Brock C, Oueslati N, Soler S et al (2007) Activation of a dimeric metabotropic glutamate receptor by intersubunit rearrangement. J Biol Chem 282:33000–33008. https://doi.org/10.1074/jbc.M702542200 PubMedCrossRefGoogle Scholar
  39. 39.
    Rivero-Müller A, Chou Y-Y, Ji I et al (2010) Rescue of defective G protein–coupled receptor function in vivo by intermolecular cooperation. Proc Natl Acad Sci 107:2319–2324. https://doi.org/10.1073/pnas.0906695106 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lanzafame AA, Guida E, Christopoulos A (2004) Effects of anandamide on the binding and signaling properties of M1 muscarinic acetylcholine receptors. Biochem Pharmacol 68:2207–2219. https://doi.org/10.1016/j.bcp.2004.08.005 PubMedCrossRefGoogle Scholar
  41. 41.
    Lane JR, Beukers MW, Mulder-Krieger T, Ijzerman AP (2010) The endocannabinoid 2-arachidonylglycerol is a negative allosteric modulator of the human A3 adenosine receptor. Biochem Pharmacol 79:48–56. https://doi.org/10.1016/j.bcp.2009.07.024 PubMedCrossRefGoogle Scholar
  42. 42.
    Pamplona FA, Ferreira J, Menezes de Lima O et al (2012) Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor. Proc Natl Acad Sci U S A 109:21134–21139. https://doi.org/10.1073/pnas.1202906109 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Prasanna X, Sengupta D, Chattopadhyay A (2016) Cholesterol-dependent conformational plasticity in GPCR dimers. Sci Rep 6:31858. https://doi.org/10.1038/srep31858 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Pluhackova K, Gahbauer S, Kranz F et al (2016) Dynamic cholesterol-conditioned dimerization of the G protein coupled chemokine receptor type 4. PLoS Comput Biol 12:e1005169. https://doi.org/10.1371/journal.pcbi.1005169 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Marino KA, Prada-Gracia D, Provasi D, Filizola M (2016) Impact of lipid composition and receptor conformation on the spatio-temporal organization of μ-opioid receptors in a multi-component plasma membrane model. PLoS Comput Biol 12:e1005240. https://doi.org/10.1371/journal.pcbi.1005240 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Koldsø H, Reddy T, Fowler PW et al (2016) Membrane compartmentalization reducing the mobility of lipids and proteins within a model plasma membrane. J Phys Chem B 120:8873–8881. https://doi.org/10.1021/acs.jpcb.6b05846 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Dawaliby R, Trubbia C, Delporte C et al (2016) Allosteric regulation of GPCR activity by phospholipids. Nat Chem Biol 12:35–39. https://doi.org/10.1038/nchembio.1960 PubMedCrossRefGoogle Scholar
  48. 48.
    Pike LJ, Han X, Chung K-N, Gross RW (2002) Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry (Mosc) 41:2075–2088CrossRefGoogle Scholar
  49. 49.
    Langelier B, Linard A, Bordat C et al (2010) Long chain-polyunsaturated fatty acids modulate membrane phospholipid composition and protein localization in lipid rafts of neural stem cell cultures. J Cell Biochem 110:1356–1364. https://doi.org/10.1002/jcb.22652 PubMedCrossRefGoogle Scholar
  50. 50.
    Saulière-Nzeh Ndong A, Saulière-Nzeh AN, Millot C et al (2010) Agonist-selective dynamic compartmentalization of human mu opioid receptor as revealed by resolutive FRAP analysis. J Biol Chem 285:14514–14520. https://doi.org/10.1074/jbc.M109.076695 PubMedCrossRefGoogle Scholar
  51. 51.
    Kaczor AA, Silva AG, Loza MI et al (2016) Structure-based virtual screening for dopamine D2 receptor ligands as potential antipsychotics. ChemMedChem 11:718–729. https://doi.org/10.1002/cmdc.201500599 PubMedCrossRefGoogle Scholar
  52. 52.
    Srivastava A, Yano J, Hirozane Y et al (2014) High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 513:124–127. https://doi.org/10.1038/nature13494 PubMedCrossRefGoogle Scholar
  53. 53.
    Stanley N, Pardo L, Fabritiis GD (2016) The pathway of ligand entry from the membrane bilayer to a lipid G protein-coupled receptor. Sci Rep 6:22639. https://doi.org/10.1038/srep22639 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hurst DP, Schmeisser M, Reggio PH (2013) Endogenous lipid activated G protein-coupled receptors: emerging structural features from crystallography and molecular dynamics simulations. Chem Phys Lipids 169:46–56. https://doi.org/10.1016/j.chemphyslip.2013.01.009 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hanson MA, Roth CB, Jo E et al (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335:851–855. https://doi.org/10.1126/science.1215904 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hertig S, Latorraca NR, Dror RO (2016) Revealing atomic-level mechanisms of protein allostery with molecular dynamics simulations. PLoS Comput Biol 12:e1004746. https://doi.org/10.1371/journal.pcbi.1004746 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Wassman CD, Baronio R, Demir Ö et al (2013) Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nat Commun 4:1407. https://doi.org/10.1038/ncomms2361 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bakan A, Nevins N, Lakdawala AS, Bahar I (2012) Druggability assessment of allosteric proteins by dynamics simulations in the presence of probe molecules. J Chem Theory Comput 8:2435–2447. https://doi.org/10.1021/ct300117j PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ivetac A, McCammon JA (2010) Mapping the druggable allosteric space of G-protein coupled receptors: a fragment-based molecular dynamics approach. Chem Biol Drug Des 76:201–217. https://doi.org/10.1111/j.1747-0285.2010.01012.x PubMedPubMedCentralGoogle Scholar
  60. 60.
    Tan YS, Śledź P, Lang S et al (2012) Using ligand-mapping simulations to design a ligand selectively targeting a cryptic surface pocket of polo-like kinase 1. Angew Chem Int Ed Engl 51:10078–10081. https://doi.org/10.1002/anie.201205676 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Fuxe K, Marcellino D, Borroto-Escuela DO et al (2010) The changing world of G protein-coupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor-receptor interactions. J Recept Signal Transduct Res 30:272–283. https://doi.org/10.3109/10799893.2010.506191 PubMedCrossRefGoogle Scholar
  62. 62.
    Smith NJ, Milligan G (2010) Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol Rev 62:701–725. https://doi.org/10.1124/pr.110.002667 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Miao Y, Goldfeld DA, Moo EV et al (2016) Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor. Proc Natl Acad Sci U S A 113:E5675–E5684. https://doi.org/10.1073/pnas.1612353113 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Dror RO, Green HF, Valant C et al (2013) Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503:295–299. https://doi.org/10.1038/nature12595 PubMedGoogle Scholar
  65. 65.
    Shang Y, Yeatman HR, Provasi D et al (2016) Proposed mode of binding and action of positive allosteric modulators at opioid receptors. ACS Chem Biol 11(5):1220–1229. https://doi.org/10.1021/acschembio.5b00712 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lyubartsev AP, Rabinovich AL (2016) Force field development for lipid membrane simulations. Biochim Biophys Acta 1858:2483–2497. https://doi.org/10.1016/j.bbamem.2015.12.033 PubMedCrossRefGoogle Scholar
  67. 67.
    Lee J, Cheng X, Swails JM et al (2016) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 12:405–413. https://doi.org/10.1021/acs.jctc.5b00935 PubMedCrossRefGoogle Scholar
  68. 68.
    Jämbeck JPM, Lyubartsev AP (2013) Another piece of the membrane puzzle: extending slipids further. J Chem Theory Comput 9:774–784. https://doi.org/10.1021/ct300777p PubMedCrossRefGoogle Scholar
  69. 69.
    Jämbeck JPM, Lyubartsev AP (2012) Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B 116:3164–3179. https://doi.org/10.1021/jp212503e PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035 PubMedCrossRefGoogle Scholar
  71. 71.
    Jämbeck JPM, Lyubartsev AP (2012) An extension and further validation of an all-atomistic force field for biological membranes. J Chem Theory Comput 8:2938–2948. https://doi.org/10.1021/ct300342n PubMedCrossRefGoogle Scholar
  72. 72.
    Paloncýová M, Fabre G, DeVane RH et al (2014) Benchmarking of force fields for molecule-membrane interactions. J Chem Theory Comput 10:4143–4151. https://doi.org/10.1021/ct500419b PubMedCrossRefGoogle Scholar
  73. 73.
    Ghahremanpour MM, Arab SS, Aghazadeh SB et al (2014) MemBuilder: a web-based graphical interface to build heterogeneously mixed membrane bilayers for the GROMACS biomolecular simulation program. Bioinforma Oxf Engl 30:439–441. https://doi.org/10.1093/bioinformatics/btt680 CrossRefGoogle Scholar
  74. 74.
    Schmidt TH, Kandt C (2012) LAMBADA and inflateGRO2: efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. J Chem Inf Model 52:2657–2669. https://doi.org/10.1021/ci3000453 PubMedCrossRefGoogle Scholar
  75. 75.
    Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. https://doi.org/10.1093/bioinformatics/btt055 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Home | Lipid builder. http://lipidbuilder.epfl.ch/home. Accessed 20 Jan 2017
  77. 77.
    Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI (2006) OPM: orientations of proteins in membranes database. Bioinformatics 22:623–625. https://doi.org/10.1093/bioinformatics/btk023 PubMedCrossRefGoogle Scholar
  78. 78.
    Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363. https://doi.org/10.1107/S0907444904011679 PubMedCrossRefGoogle Scholar
  79. 79.
    Koziara KB, Stroet M, Malde AK, Mark AE (2014) Testing and validation of the automated topology builder (ATB) version 2.0: prediction of hydration free enthalpies. J Comput Aided Mol Des 28:221–233. https://doi.org/10.1007/s10822-014-9713-7 PubMedCrossRefGoogle Scholar
  80. 80.
    Sousa da Silva AW, Vranken WF (2012) ACPYPE–antechamber python parser interfacE. BMC Res Notes 5:367. https://doi.org/10.1186/1756-0500-5-367 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Dupradeau F-Y, Pigache A, Zaffran T et al (2010) The R.E.D. Tools: advances in RESP and ESP charge derivation and force field library building. Phys Chem Chem Phys PCCP 12:7821–7839. https://doi.org/10.1039/c0cp00111b PubMedCrossRefGoogle Scholar
  82. 82.
    Perez-Aguilar JM, Shan J, LeVine MV et al (2014) A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2. J Am Chem Soc 136:16044–16054. https://doi.org/10.1021/ja508394x PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kaczor AA, Rutkowska E, Bartuzi D et al (2016) Computational methods for studying GPCRs. Methods Cell Biol 132:359–399. https://doi.org/10.1016/bs.mcb.2015.11.002 PubMedCrossRefGoogle Scholar
  84. 84.
    Ng HW, Laughton CA, Doughty SW (2014) Molecular dynamics simulations of the adenosine A2a receptor in POPC and POPE lipid bilayers: effects of membrane on protein behavior. J Chem Inf Model 54:573–581. https://doi.org/10.1021/ci400463z PubMedCrossRefGoogle Scholar
  85. 85.
    Ng HW, Laughton CA, Doughty SW (2013) Molecular dynamics simulations of the adenosine A2a receptor: structural stability, sampling, and convergence. J Chem Inf Model 53:1168–1178. https://doi.org/10.1021/ci300610w PubMedCrossRefGoogle Scholar
  86. 86.
    LeVine MV, Weinstein H (2014) NbIT–a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT. PLoS Comput Biol 10:e1003603. https://doi.org/10.1371/journal.pcbi.1003603 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    McClendon CL, Friedland G, Mobley DL et al (2009) Quantifying correlations between allosteric sites in thermodynamic ensembles. J Chem Theory Comput 5:2486–2502. https://doi.org/10.1021/ct9001812 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Wess J (2005) Allosteric binding sites on muscarinic acetylcholine receptors. Mol Pharmacol 68:1506–1509. https://doi.org/10.1124/mol.105.019141 PubMedGoogle Scholar
  89. 89.
    Kruse AC, Ring AM, Manglik A et al (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504:101–106. https://doi.org/10.1038/nature12735 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Christopher JA, Aves SJ, Bennett KA et al (2015) Fragment and structure-based drug discovery for a class C GPCR: discovery of the mGlu5 negative allosteric modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 58:6653–6664. https://doi.org/10.1021/acs.jmedchem.5b00892 PubMedCrossRefGoogle Scholar
  91. 91.
    Doré AS, Okrasa K, Patel JC et al (2014) Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511:557–562. https://doi.org/10.1038/nature13396 PubMedCrossRefGoogle Scholar
  92. 92.
    Wu H, Wang C, Gregory KJ et al (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344:58–64. https://doi.org/10.1126/science.1249489 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Li S, Shen Q, Su M et al (2016) Alloscore: a method for predicting allosteric ligand-protein interactions. Bioinformatics 32:1574–1576. https://doi.org/10.1093/bioinformatics/btw036 PubMedCrossRefGoogle Scholar
  94. 94.
    Huang W, Lu S, Huang Z et al (2013) Allosite: a method for predicting allosteric sites. Bioinformatics 29:2357–2359. https://doi.org/10.1093/bioinformatics/btt399 PubMedCrossRefGoogle Scholar
  95. 95.
    Planesas JM, Pérez-Nueno VI, Borrell JI, Teixidó J (2015) Studying the binding interactions of allosteric agonists and antagonists of the CXCR4 receptor. J Mol Graph Model 60:1–14. https://doi.org/10.1016/j.jmgm.2015.05.004 PubMedCrossRefGoogle Scholar
  96. 96.
    Hui W-Q, Cheng Q, Liu T-Y, Ouyang Q (2016) Homology modeling, docking, and molecular dynamics simulation of the receptor GALR2 and its interactions with galanin and a positive allosteric modulator. J Mol Model 22:90. https://doi.org/10.1007/s00894-016-2944-x PubMedCrossRefGoogle Scholar
  97. 97.
    Garcia-Perez J, Rueda P, Alcami J et al (2011) Allosteric model of maraviroc binding to CC chemokine receptor 5 (CCR5). J Biol Chem 286:33409–33421. https://doi.org/10.1074/jbc.M111.279596 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Marquer C, Fruchart-Gaillard C, Letellier G et al (2011) Structural model of ligand-G protein-coupled receptor (GPCR) complex based on experimental double mutant cycle data: MT7 snake toxin bound to dimeric hM1 muscarinic receptor. J Biol Chem 286:31661–31675. https://doi.org/10.1074/jbc.M111.261404 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ragnarsson L, Wang C-IA, Andersson Å et al (2013) Conopeptide ρ-TIA defines a new allosteric site on the extracellular surface of the α1B-adrenoceptor. J Biol Chem 288:1814–1827. https://doi.org/10.1074/jbc.M112.430785 PubMedCrossRefGoogle Scholar
  100. 100.
    Mukund S, Shang Y, Clarke HJ et al (2013) Inhibitory mechanism of an allosteric antibody targeting the glucagon receptor. J Biol Chem 288:36168–36178. https://doi.org/10.1074/jbc.M113.496984 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Lane JR, Chubukov P, Liu W et al (2013) Structure-based ligand discovery targeting orthosteric and allosteric pockets of dopamine receptors. Mol Pharmacol 84:794–807. https://doi.org/10.1124/mol.113.088054 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    de Graaf C, Rein C, Piwnica D et al (2011) Structure-based discovery of allosteric modulators of two related class B G-protein-coupled receptors. ChemMedChem 6:2159–2169. https://doi.org/10.1002/cmdc.201100317 PubMedCrossRefGoogle Scholar
  103. 103.
    Kubas H, Meyer U, Krueger B et al (2013) Discovery, synthesis, and structure-activity relationships of 2-aminoquinazoline derivatives as a novel class of metabotropic glutamate receptor 5 negative allosteric modulators. Bioorg Med Chem Lett 23:4493–4500. https://doi.org/10.1016/j.bmcl.2013.06.049 PubMedCrossRefGoogle Scholar
  104. 104.
    Noeske T, Jirgensons A, Starchenkovs I et al (2007) Virtual screening for selective allosteric mGluR1 antagonists and structure-activity relationship investigations for coumarine derivatives. ChemMedChem 2:1763–1773. https://doi.org/10.1002/cmdc.200700151 PubMedCrossRefGoogle Scholar
  105. 105.
    Mueller R, Dawson ES, Niswender CM et al (2012) Iterative experimental and virtual high-throughput screening identifies metabotropic glutamate receptor subtype 4 positive allosteric modulators. J Mol Model 18:4437–4446. https://doi.org/10.1007/s00894-012-1441-0 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Mueller R, Rodriguez AL, Dawson ES et al (2010) Identification of metabotropic glutamate receptor subtype 5 potentiators using virtual high-throughput screening. ACS Chem Neurosci 1:288–305. https://doi.org/10.1021/cn9000389 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Mueller R, Dawson ES, Meiler J et al (2012) Discovery of 2-(2-benzoxazoyl amino)-4-aryl-5-cyanopyrimidine as negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlμ5): from an artificial neural network virtual screen to an in vivo tool compound. ChemMedChem 7:406–414. https://doi.org/10.1002/cmdc.201100510 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Omer A, Prasad CS (2012) Designing allosteric modulators for active conformational state of m-glutamate G-protein coupled receptors. Bioinformation 8:170–174. https://doi.org/10.6026/97320630008170 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Jang JW, Cho N-C, Min S-J et al (2016) Novel scaffold identification of mGlu1 receptor negative allosteric modulators using a hierarchical virtual screening approach. Chem Biol Drug Des 87:239–256. https://doi.org/10.1111/cbdd.12654 PubMedCrossRefGoogle Scholar
  110. 110.
    Jiang L, Zhang X, Chen X et al (2015) Virtual screening and molecular dynamics study of potential negative allosteric modulators of mGluR1 from Chinese herbs. Molecules 20:12769–12786. https://doi.org/10.3390/molecules200712769 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Damian Bartuzi
    • 1
  • Agnieszka A. Kaczor
    • 2
    • 3
  • Dariusz Matosiuk
    • 1
  1. 1.Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling LabMedical University of LublinLublinPoland
  2. 2.Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Faculty of Pharmacy with Division of Medical AnalyticsMedical University of LublinLublinPoland
  3. 3.Department of Pharmaceutical Chemistry, School of PharmacyUniversity of Eastern FinlandKuopioFinland

Personalised recommendations