Methodologies for the Examination of Water in GPCRs

  • Andrea Bortolato
  • Benjamin G. TehanEmail author
  • Robert T. Smith
  • Jonathan S. Mason
Part of the Methods in Molecular Biology book series (MIMB, volume 1705)


The following chapter examines some of the current “state-of-the-art” tools for predicting, scoring, and examining explicit water molecules in proteins and protein/ligand complexes, highlighting some of the ways information can be readily examined in a manner that is useful in a drug discovery process.

Key words

Water WaterFLAP Molecular dynamics WaterMap Water energetics Water perturbation 


  1. 1.
    Ball P (2008) Water as an active constituent in cell biology. Chem Rev 108(1):74–108. CrossRefPubMedGoogle Scholar
  2. 2.
    Chaplin M (2006) Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7(11):861–866. CrossRefPubMedGoogle Scholar
  3. 3.
    Ball P (2008) Water as a biomolecule. ChemPhysChem 9(18):2677–2685. CrossRefPubMedGoogle Scholar
  4. 4.
    Mason JS, Bortolato A, Congreve M et al (2012) New insights from structural biology into the druggability of G protein-coupled receptors. Trends Pharmacol Sci 33(5):249–260. CrossRefPubMedGoogle Scholar
  5. 5.
    Mason JS, Bortolato A, Weiss DR et al (2013) High end GPCR design: crafted ligand design and druggability analysis using protein structure, lipophilic hotspots and explicit water networks. Silico Pharmacol 1(1):23. CrossRefGoogle Scholar
  6. 6.
    Cooke RM, Brown AJH, Marshall FH et al (2015) Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discov Today 20(11):1355–1364. CrossRefPubMedGoogle Scholar
  7. 7.
    Bortolato A, Tehan BG, Bodnarchuk MS et al (2013) Water network perturbation in ligand binding: adenosine A2A antagonists as a case study. J Chem Inf Model 53:1700–1713. CrossRefPubMedGoogle Scholar
  8. 8.
    Bortolato A, Deflorian F, Weiss DR, Mason JS (2015) Decoding the role of water dynamics in ligand-protein unbinding: CRF1R as a test case. J Chem Inf Model 55(9):1857–1866. CrossRefPubMedGoogle Scholar
  9. 9.
    FLAP 2.2, Molecular Discovery Ltd.
  10. 10.
    Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28(7):849–857CrossRefPubMedGoogle Scholar
  11. 11.
    Schrödinger release 2016-4: WaterMap. Schrödinger, LLC, New York, NY, 2016Google Scholar
  12. 12.
    Abel R, Young T, Farid R et al (2008) Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J Am Chem Soc 130(9):2817–2831. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Young T, Abel R, Kim B et al (2007) Motifs for molecular recognition exploiting hydrophobic enclosure in protein–ligand binding. Proc Natl Acad Sci U S A 104:808–813. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    The PyMOL Molecular Graphics System, Version, Open-SourceGoogle Scholar
  15. 15.
    Berendsen HJ, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56CrossRefGoogle Scholar
  16. 16.
    Sousa da Silva AW, Vranken WF (2012) ACPYPE - AnteChamber PYthon parser interfacE. BMC Res Notes 5(1):367CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lazaridis T (1998) Inhomogeneous fluid approach to solvation thermodynamics. 1. Theory. J Phys Chem B 102:3531–3541CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Andrea Bortolato
    • 1
  • Benjamin G. Tehan
    • 1
    Email author
  • Robert T. Smith
    • 1
  • Jonathan S. Mason
    • 1
  1. 1.Heptares Therapeutics Ltd.Welwyn Garden CityUK

Personalised recommendations