Advertisement

Comparative Genomics in Homo sapiens

  • Martin Oti
  • Michael Sammeth
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1704)

Abstract

Genomes can be compared at different levels of divergence, either between species or within species. Within species genomes can be compared between different subpopulations, such as human subpopulations from different continents. Investigating the genomic differences between different human subpopulations is important when studying complex diseases that are affected by many genetic variants, as the variants involved can differ between populations. The 1000 Genomes Project collected genome-scale variation data for 2504 human individuals from 26 different populations, enabling a systematic comparison of variation between human subpopulations. In this chapter, we present step-by-step a basic protocol for the identification of population-specific variants employing the 1000 Genomes data. These variants are subsequently further investigated for those that affect the proteome or RNA splice sites, to investigate potentially biologically relevant differences between the populations.

Key words

Comparative genomics Population variation Human genomics Single-nucleotide polymorphisms 

References

  1. 1.
    Miller W, Makova KD, Nekrutenko A, Hardison RC (2004) Comparative genomics. Annu Rev Genomics Hum Genet 5:15–56CrossRefPubMedGoogle Scholar
  2. 2.
    Gibbons A (2015) Revolution in human evolution. Science 349:362–366CrossRefPubMedGoogle Scholar
  3. 3.
    Pääbo S (2015) The diverse origins of the human gene pool. Nat Rev Genet 16:313–314CrossRefPubMedGoogle Scholar
  4. 4.
    Allentoft ME, Sikora M, Sjögren K-G et al (2015) Population genomics of bronze age Eurasia. Nature 522:167–172CrossRefPubMedGoogle Scholar
  5. 5.
    Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefPubMedGoogle Scholar
  6. 6.
    Olivier M, Aggarwal A, Allen J et al (2001) A high-resolution radiation hybrid map of the human genome draft sequence. Science 291:1298–1302CrossRefPubMedGoogle Scholar
  7. 7.
    McCarthy MI, Abecasis GR, Cardon LR et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9:356–369CrossRefPubMedGoogle Scholar
  8. 8.
    Gibbs RA, Belmont JW, Hardenbol P et al (2003) The international HapMap project. Nature 426:789–796CrossRefGoogle Scholar
  9. 9.
    Manolio TA, Collins FS (2009) The HapMap and genome-wide association studies in diagnosis and therapy. Annu Rev Med 60:443–456CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Abecasis GR, Auton A, Brooks LD et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 135:0–9Google Scholar
  11. 11.
    Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Foissac S, Sammeth M (2015) Analysis of alternative splicing events in custom gene datasets by AStalavista. Methods Mol Biol 1269:379–392CrossRefPubMedGoogle Scholar
  13. 13.
    Harrow J, Frankish A, Gonzalez JM et al (2012) GENCODE: the reference human genome annotation for the ENCODE project. Genome Res 22:1760–1774CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sabeti PC, Reich DE, Higgins JM et al (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419:832–837CrossRefPubMedGoogle Scholar
  15. 15.
    Xue Y, Zhang X, Huang N et al (2009) Population differentiation as an indicator of recent positive selection in humans: an empirical evaluation. Genetics 183:1065–1077CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Blanco E, Parra G, Guigó R (2007) Using geneid to identify genes. Curr Protoc Bioinformatics Chapter 4:Unit 4.3Google Scholar
  17. 17.
    Speir ML, Zweig AS, Rosenbloom KR et al (2016) The UCSC genome browser database: 2016 update. Nucleic Acids Res 44:D717–D725CrossRefPubMedGoogle Scholar
  18. 18.
    Flicek P, Amode MR, Barrell D et al (2014) Ensembl 2014. Nucleic Acids Res 42:D749–D755CrossRefPubMedGoogle Scholar
  19. 19.
    International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Institute of Biophysics Carlos Chagas Filho (IBCCF)Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations