Comparative Methods for Reconstructing Ancient Genome Organization

  • Yoann Anselmetti
  • Nina Luhmann
  • Sèverine Bérard
  • Eric Tannier
  • Cedric ChauveEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1704)


Comparative genomics considers the detection of similarities and differences between extant genomes, and, based on more or less formalized hypotheses regarding the involved evolutionary processes, inferring ancestral states explaining the similarities and an evolutionary history explaining the differences. In this chapter, we focus on the reconstruction of the organization of ancient genomes into chromosomes. We review different methodological approaches and software, applied to a wide range of datasets from different kingdoms of life and at different evolutionary depths. We discuss relations with genome assembly, and potential approaches to validate computational predictions on ancient genomes that are almost always only accessible through these predictions.

Key words

Comparative genomics Paleogenomics Ancient genomes Ancestral genomes 



C.C. is funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant 249834. E.T., S.B., and Y.A. are funded by the French Agence Nationale pour la Recherche (ANR) through PIA Grant ANR-10-BINF-01-01 “Ancestrome”. N.L. is funded by the International DFG Research Training Group GRK 1906/1.


  1. 1.
    Sturtevant AH (1921) A case of rearrangement of genes in drosophila. Proc Natl Acad Sci U S A 7:235–237PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Dobzhansky T, Sturtevant AH (1938) Inversions in the chromosomes of drosophila pseudoobscura. Genetics 23:28–64PubMedPubMedCentralGoogle Scholar
  3. 3.
    Pauling L, Zuckerkandl E (1963) Chemical paleogenetics. Acta Chem Scand 17:S9–S16CrossRefGoogle Scholar
  4. 4.
    Poinar HN, Schwarz C, Qi J et al (2006) Metagenomics to paleogenomics: large–scale sequencing of mammoth DNA. Science 311:392–394PubMedCrossRefGoogle Scholar
  5. 5.
    Muffato M, Roest Crollius H (2008) Paleogenomics in vertebrates, or the recovery of lost genomes from the mist of time. Bioessays 30:122–134PubMedCrossRefGoogle Scholar
  6. 6.
    Ma J, Zhang L, Suh BB et al (2006) Reconstructing contiguous regions of an ancestral genome. Genome Res 16:1557–1565PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chauve C, Tannier E (2008) A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genomes. PLoS Comput Biol 4:e1000234PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Neafsey DE, Waterhouse RM, Abai MR et al (2015) Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 anopheles mosquitoes. Science 347:1258522PubMedCrossRefGoogle Scholar
  9. 9.
    Semeria M, Tannier E, Guéguen L (2015) Probabilistic modeling of the evolution of gene synteny within reconciled phylogenies. BMC Bioinformatics 16(Suppl 14):S5PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chauve C, Gavranovic H, Ouangraoua A et al (2010) Yeast ancestral genome reconstructions: the possibilities of computational methods II. J Comput Biol 17:1097–1112PubMedCrossRefGoogle Scholar
  11. 11.
    Sankoff D, Zheng C, Wall PK et al (2009) Towards improved reconstruction of ancestral gene order in angiosperm phylogeny. J Comput Biol 16:1353–1367PubMedCrossRefGoogle Scholar
  12. 12.
    Murat F, Xu JH, Tannier E et al (2010) Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 20:1545–1557PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ming R, VanBuren R, Wai CM et al (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47:1435–1442PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Salse J (2016) Ancestors of modern plant crops. Curr Opin Plant Biol 30:134–142PubMedCrossRefGoogle Scholar
  15. 15.
    Murat F, Louis A, Maumus F et al (2015) Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol 16:262PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Murat F, Zhang R, Guizard S et al (2015) Karyotype and gene order evolution from reconstructed extinct ancestors highlight contrasts in genome plasticity of modern rosid crops. Genome Biol Evol 7:735–749PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wang Y, Li W, Zhang T et al (2006) Reconstruction of ancient genome and gene order from complete microbial genome sequences. J Theor Biol 239:494–498PubMedCrossRefGoogle Scholar
  18. 18.
    Patterson M, Szöllősi G, Daubin V et al (2013) Lateral gene transfer, rearrangement, reconciliation. BMC Bioinformatics 14(Suppl 15):S4PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Darling AE, Miklós I, Ragan MA (2008) Dynamics of genome rearrangement in bacterial populations. PLoS Genet 4:e1000128PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kohn M, Högel J, Vogel W et al (2006) Reconstruction of a 450–my–old ancestral vertebrate protokaryotype. Trends Genet 22:203–210PubMedCrossRefGoogle Scholar
  21. 21.
    Nakatani Y, Takeda H, Kohara Y et al (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17:1254–1265PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ouangraoua A, Tannier E, Chauve C (2011) Reconstructing the architecture of the ancestral amniote genome. Bioinformatics 27:2664–2671PubMedCrossRefGoogle Scholar
  23. 23.
    Jaillon O, Aury JM, Brunet F et al (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto–karyotype. Nature 431:946–957PubMedCrossRefGoogle Scholar
  24. 24.
    Woods IG, Wilson C, Friedlander B et al (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15:1307–1314PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Catchen JM, Conery JS, Postlethwait JH (2008) Inferring ancestral gene order. Methods Mol Biol 452:365–383PubMedCrossRefGoogle Scholar
  26. 26.
    Naruse K, Tanaka M, Mita K et al (2004) A medaka gene map: the trace of ancestral vertebrate proto–chromosomes revealed by comparative gene mapping. Genome Res 14:820–828PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Putnam NH, Butts T, Ferrier DEK et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071PubMedCrossRefGoogle Scholar
  28. 28.
    Putnam NH, Srivastava M, Hellsten U et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94PubMedCrossRefGoogle Scholar
  29. 29.
    Herrero J, Muffato M, Beal K et al (2016) Ensembl comparative genomics resources. Database 2016:bav096. PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Speir ML, Zweig AS, Rosenbloom KR et al (2016) The UCSC genome browser database: 2016 update. Nucleic Acids Res 44:D717–D725PubMedCrossRefGoogle Scholar
  31. 31.
    Nagarajan N, Pop M (2013) Sequence assembly demystified. Nat Rev Genet 14:157–167PubMedCrossRefGoogle Scholar
  32. 32.
    Penel S, Arigon AM, Dufayard JF, Sertier AS, Daubin V, Duret L, Gouy M, Perrière G (2009) Databases of homologous gene families for comparative genomics. BMC Bioinformatics 10(Suppl 6):S3PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sankoff D, Nadeau JH (2003) Chromosome rearrangements in evolution: from gene order to genome sequence and back. Proc Natl Acad Sci U S A 100:11188–11189PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    M. Višnovská, T. Vinar, and B. Brejová (2013) DNA sequence segmentation based on local similarity. In: ITAT 2013 Proceedings, pp. 36–43Google Scholar
  35. 35.
    Dousse A, Junier T, Zdobnov EM (2016) CEGA–a catalog of conserved elements from genomic alignments. Nucleic Acids Res 44:D96–D100PubMedCrossRefGoogle Scholar
  36. 36.
    M. Belcaid, A. Bergeron, A. Chateau, et al. (2007) Exploring genome rearrangements using virtual hybridization. In: APBC’07: 5th Asia–Pacific bioinformatics conference, Imperial College Press 2007, pp. 205–214Google Scholar
  37. 37.
    Kim J, Larkin DM, Cai Q et al (2013) Reference–assisted chromosome assembly. Proc Natl Acad Sci U S A 110:1785–1790PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Biller P, Gueguen L, Knibbe C, Tannier E (2016) Breaking good: accounting for the fragility of genomic regions in rearrangement distance estimation. Genome Biol Evol 8(5):1427–1439PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Alizadeh F, Karp RM, Weisser DK et al (1995) Physical mapping of chromosomes using unique probes. J Comput Biol 2:159–184PubMedCrossRefGoogle Scholar
  40. 40.
    Yancopoulos S, Attie O, Friedberg R (2005) Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21:3340–3346PubMedCrossRefGoogle Scholar
  41. 41.
    Fertin G (2009) Combinatorics of genome rearrangements. MIT Press, CambridgeCrossRefGoogle Scholar
  42. 42.
    Tannier E, Zheng C, Sankoff D (2009) Multichromosomal median and halving problems under different genomic distances. BMC Bioinformatics 10:120PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Xu AW, Moret BME (2011) GASTS: parsimony scoring under rearrangements. In: Algorithms in bioinformatics. Springer, Berlin Heidelberg, pp 351–363CrossRefGoogle Scholar
  44. 44.
    Zheng C, Sankoff D (2011) On the PATHGROUPS approach to rapid small phylogeny. BMC Bioinformatics 12(Suppl 1):S4PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Alekseyev MA, Pevzner PA (2009) Breakpoint graphs and ancestral genome reconstructions. Genome Res 19:943–957PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Avdeyev P, Jiang S, Aganezov S et al (2016) Reconstruction of ancestral genomes in presence of gene gain and loss. J Comput Biol 23:150–164PubMedCrossRefGoogle Scholar
  47. 47.
    Ma J, Ratan A, Raney BJ et al (2008) The infinite sites model of genome evolution. Proc Natl Acad Sci U S A 105:14254–14261PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Paten B, Zerbino DR, Hickey G et al (2014) A unifying model of genome evolution under parsimony. BMC Bioinformatics 15:206PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    D. Simon and B. Larget (2004) Bayesian analysis to describe genomic evolution by rearrangement (BADGER), version 1.02 beta, Department of Mathematics and Computer Science, Duquesne UniversityGoogle Scholar
  50. 50.
    Feijao P, Meidanis J (2011) SCJ: a breakpoint–like distance that simplifies several rearrangement problems. IEEE/ACM Trans Comput Biol Bioinform 8:1318–1329PubMedCrossRefGoogle Scholar
  51. 51.
    Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20:406–416CrossRefGoogle Scholar
  52. 52.
    Miklós I, Smith H (2015) Sampling and counting genome rearrangement scenarios. BMC Bioinformatics 16(Suppl 14):S6PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Jones BR, Rajaraman A, Tannier E et al (2012) ANGES: reconstructing ANcestral GEnomeS maps. Bioinformatics 28:2388–2390PubMedCrossRefGoogle Scholar
  54. 54.
    Hu F, Zhou J, Zhou L et al (2014) Probabilistic reconstruction of ancestral gene orders with insertions and deletions. IEEE/ACM Trans Comput Biol Bioinform 11:667–672PubMedCrossRefGoogle Scholar
  55. 55.
    J. Ma (2010) A probabilistic framework for inferring ancestral genomic orders. In: Bioinformatics and biomedicine (BIBM), pp. 179–184Google Scholar
  56. 56.
    Maňuch J, Patterson M, Wittler R et al (2012) Linearization of ancestral multichromosomal genomes. BMC Bioinformatics 13(Suppl 19):S11PubMedPubMedCentralGoogle Scholar
  57. 57.
    Stoye J, Wittler R (2009) A unified approach for reconstructing ancient gene clusters. IEEE/ACM Trans Comput Biol Bioinform 6:387–400PubMedCrossRefGoogle Scholar
  58. 58.
    Maňuch J, Patterson M, Chauve C (2012) Hardness results on the gapped consecutive–ones property problem. Discrete Appl Math 160:2760–2768CrossRefGoogle Scholar
  59. 59.
    Maňuch J, Patterson M (2011) The complexity of the gapped consecutive–ones property problem for matrices of bounded maximum degree. J Comput Biol 18:1243–1253PubMedCrossRefGoogle Scholar
  60. 60.
    Gavranović H, Chauve C, Salse J et al (2011) Mapping ancestral genomes with massive gene loss: a matrix sandwich problem. Bioinformatics 27:i257–i265PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Csurös M (2010) Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26:1910–1912PubMedCrossRefGoogle Scholar
  62. 62.
    De Bie T, Cristianini N, Demuth JP et al (2006) CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22:1269–1271PubMedCrossRefGoogle Scholar
  63. 63.
    Csűrös M (2013) How to infer ancestral genome features by parsimony: dynamic programming over an evolutionary tree. In: Models and algorithms for genome evolution. Springer, London, pp 29–45CrossRefGoogle Scholar
  64. 64.
    Sankoff D, Rousseau P (1975) Locating the vertices of a steiner tree in an arbitrary metric space. Math Prog 9:240–246CrossRefGoogle Scholar
  65. 65.
    Bergeron A, Chauve C, Gingras Y (2008) Formal models of gene clusters. In: Bioinformatics algorithms. John Wiley & Sons, Inc, Hoboken, pp 175–202Google Scholar
  66. 66.
    Wittler R, Maňuch J, Patterson M et al (2011) Consistency of sequence–based gene clusters. J Comput Biol 18:1023–1039PubMedCrossRefGoogle Scholar
  67. 67.
    Treangen TJ, Salzberg SL (2012) Repetitive DNA and next–generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46Google Scholar
  68. 68.
    Rajaraman A, Zanetti J, Manuch J et al (2016) Algorithms and complexity results for genome mapping problems. IEEE/ACM Trans Comput Biol Bioinform 14(2):418–430. PubMedCrossRefGoogle Scholar
  69. 69.
    Rajaraman A, Tannier E, Chauve C (2013) FPSAC: fast phylogenetic scaffolding of ancient contigs. Bioinformatics 29:2987–2994PubMedCrossRefGoogle Scholar
  70. 70.
    Gagnon Y, Blanchette M, El Mabrouk N (2012) A flexible ancestral genome reconstruction method based on gapped adjacencies. BMC Bioinformatics 13(Suppl 19):S4PubMedPubMedCentralGoogle Scholar
  71. 71.
    Nakhleh L (2013) Computational approaches to species phylogeny inference and gene tree reconciliation. Trends Ecol Evol 28:719–728PubMedCrossRefGoogle Scholar
  72. 72.
    Szöllősi GJ, Tannier E, Daubin V et al (2015) The inference of gene trees with species trees. Syst Biol 64:42–62CrossRefGoogle Scholar
  73. 73.
    Jacox E, Chauve C, Szöllősi GJ et al (2016) ecceTERA: comprehensive gene tree-species tree reconciliation using parsimony. Bioinformatics 32(13):2056–2058. PubMedCrossRefGoogle Scholar
  74. 74.
    Luhmann N, Thévenin A, Ouangraoua A et al (2016) The SCJ small parsimony problem for weighted gene adjacencies. In: Bioinformatics research and applications. Springer, Berlin HeidelbergGoogle Scholar
  75. 75.
    Ma J, Ratan A, Raney BJ et al (2008) DUPCAR: reconstructing contiguous ancestral regions with duplications. J Comput Biol 15:1007–1027PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Bérard S, Gallien C, Boussau B et al (2012) Evolution of gene neighborhoods within reconciled phylogenies. Bioinformatics 28:i382–i388PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Chauve C, Ponty Y, Zanetti J (2015) Evolution of genes neighborhood within reconciled phylogenies: an ensemble approach. BMC Bioinformatics 16(Suppl 19):S6PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Anselmetti Y, Berry V, Chauve C et al (2015) Ancestral gene synteny reconstruction improves extant species scaffolding. BMC Genomics 16(Suppl 10):S11PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Duchemin W, Anselmetti Y, Patterson M et al (2017) DeCoSTAR: reconstructing the ancestral organization of genes or genomes using reconciled phylogenies. Genome Biol Evol 9:1312–1319PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Koren S, Schatz MC, Walenz BP et al (2012) Hybrid error correction and de novo assembly of single–molecule sequencing reads. Nat Biotechnol 30:693–700PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Antipov D, Korobeynikov A, McLean JS et al (2015) hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32:1009–1015PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Paulino D, Warren RL, Vandervalk BP et al (2015) Sealer: a scalable gap–closing application for finishing draft genomes. BMC Bioinformatics 16:230PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Salmela L, Sahlin K, Mäkinen V et al (2016) Gap filling as exact path length problem. J Comput Biol 23:347–361PubMedCrossRefGoogle Scholar
  84. 84.
    English AC, Richards S, Han Y et al (2012) Mind the gap: upgrading genomes with Pacific biosciences RS long read sequencing technology. PLoS One 7:e47768PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Koren S, Phillippy AM (2015) One chromosome, one contig: complete microbial genomes from long–read sequencing and assembly. Curr Opin Microbiol 23:110–120PubMedCrossRefGoogle Scholar
  86. 86.
    Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13:278–289PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Lin Y, Nurk S, Pevzner PA (2014) What is the difference between the breakpoint graph and the de Bruijn graph? BMC Genomics 15(Suppl 6):S6CrossRefGoogle Scholar
  88. 88.
    Compeau PEC, Pevzner PA, Tesler G (2011) How to apply de Bruijn graphs to genome assembly. Nat Biotechnol 29:987–991PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Muñoz A, Zheng C, Zhu Q et al (2010) Scaffold filling, contig fusion and comparative gene order inference. BMC Bioinformatics 11:304PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Aganezov S, Sitdykova N, AGC Consortium et al (2015) Scaffold assembly based on genome rearrangement analysis. Comput Biol Chem 57:46–53PubMedCrossRefGoogle Scholar
  91. 91.
    Higuchi R, Bowman B, Freiberger M et al (1984) DNA sequences from the quagga, an extinct member of the horse family. Nature 312:282–284PubMedCrossRefGoogle Scholar
  92. 92.
    Cooper A, Lalueza-Fox C, Anderson S et al (2001) Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409:704–707PubMedCrossRefGoogle Scholar
  93. 93.
    Stiller M, Baryshnikov G, Bocherens H et al (2010) Withering away–25,000 years of genetic decline preceded cave bear extinction. Mol Biol Evol 27:975–978PubMedCrossRefGoogle Scholar
  94. 94.
    Krings M, Stone A, Schmitz RW et al (1997) Neandertal DNA sequences and the origin of modern humans. Cell 90:19–30PubMedCrossRefGoogle Scholar
  95. 95.
    Marciniak S, Klunk J, Devault A et al (2015) Ancient human genomics: the methodology behind reconstructing evolutionary pathways. J Hum Evol 79:21–34PubMedCrossRefGoogle Scholar
  96. 96.
    Rasmussen S, Allentoft ME, Nielsen K et al (2015) Early divergent strains of Yersinia Pestis in Eurasia 5,000 years ago. Cell 163:571–582PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Wagner DM, Klunk J, Harbeck M et al (2014) Yersinia Pestis and the plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect Dis 14:319–326PubMedCrossRefGoogle Scholar
  98. 98.
    Miller W, Drautz DI, Ratan A et al (2008) Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456:387–390PubMedCrossRefGoogle Scholar
  99. 99.
    Orlando L, Ginolhac A, Zhang G et al (2013) Recalibrating Equus evolution using the genome sequence of an early middle pleistocene horse. Nature 499:74–78PubMedCrossRefGoogle Scholar
  100. 100.
    Peltzer A, Jäger G, Herbig A et al (2016) EAGER: efficient ancient genome reconstruction. Genome Biol 17:1–14CrossRefGoogle Scholar
  101. 101.
    Minkin I, Patel A, Kolmogorov M et al (2013) Sibelia: a scalable and comprehensive synteny block generation tool for closely related microbial genomes. In: Algorithms in bioinformatics. Springer, Berlin Heidelberg, pp 215–229CrossRefGoogle Scholar
  102. 102.
    Bos KI, Schuenemann VJ, Golding GB et al (2011) A draft genome of Yersinia Pestis from victims of the black death. Nature 478:506–510PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Froenicke L, Caldés MG, Graphodatsky A et al (2006) Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res 16:306–310PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Steel M, Penny D (2000) Parsimony, likelihood, and the role of models in molecular phylogenetics. Mol Biol Evol 17:839–850PubMedCrossRefGoogle Scholar
  105. 105.
    Durrett R, Nielsen R, York TL (2004) Bayesian estimation of genomic distance. Genetics 166:621–629PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Gould SJ (1990) Wonderful life: the burgess shale and the nature of history. Norton, New YorkGoogle Scholar
  107. 107.
    Hillis DM, Bull JJ, White ME et al (1992) Experimental phylogenetics: generation of a known phylogeny. Science 255:589–592PubMedCrossRefGoogle Scholar
  108. 108.
    R.N. Randall (2012) Experimental phylogenetics: a benchmark for ancestral sequence reconstruction.
  109. 109.
    Barrick JE, Yu DS, Yoon SH et al (2009) Genome evolution and adaptation in a long–term experiment with Escherichia Coli. Nature 461:1243–1247PubMedCrossRefGoogle Scholar
  110. 110.
    Romiguier J, Ranwez V, Douzery EJP et al (2013) Genomic evidence for large, long–lived ancestors to placental mammals. Mol Biol Evol 30:5–13PubMedCrossRefGoogle Scholar
  111. 111.
    Szöllosi GJ, Boussau B, Abby SS et al (2012) Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc Natl Acad Sci U S A 109:17513–17518PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Beiko RG, Charlebois RL (2007) A simulation test bed for hypotheses of genome evolution. Bioinformatics 23:825–831PubMedCrossRefGoogle Scholar
  113. 113.
    Dalquen DA, Anisimova M, Gonnet GH et al (2012) ALF–a simulation framework for genome evolution. Mol Biol Evol 29:1115–1123PubMedCrossRefGoogle Scholar
  114. 114.
    Biller P, Knibbe C, Beslon G, Tannier E (2016) Comparative genomics on artificial life. In: Computability in Europe, to appear. Springer, Cham Google Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Yoann Anselmetti
    • 1
  • Nina Luhmann
    • 2
    • 3
    • 4
  • Sèverine Bérard
    • 1
  • Eric Tannier
    • 5
  • Cedric Chauve
    • 6
    Email author
  1. 1.Institut des Sciences de l’ÉvolutionUniversité Montpellier 2MontpellierFrance
  2. 2.Faculty of TechnologyBielefeld UniversityBielefeldGermany
  3. 3.Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
  4. 4.International Research Training Group1906Bielefeld UniversityBielefeldGermany
  5. 5.UMR CNRS 5558 - LBBE “Biométrie et Biologie Évolutive”Inria Grenoble Rhône-Alpes and University of LyonLyonFrance
  6. 6.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations